期刊文献+

聚丁二烯胶乳的辐射硫化 被引量:2

Vulcanization of polybutadiene latex induced by ^(60)Coγ-rays irradiation
下载PDF
导出
摘要 用^(60)Co辐射硫化聚丁二烯胶乳(Polybutadiene latex,PBL)制备全硫化粉末橡胶(Fully vulcanized polybu- tadiene rubber particles,FVBR),并研究胶乳的交联行为。用动态激光光散射仪和原子力显微镜(Atomic force microscopy,AFM)观测粒径尺寸、粒径分布与形貌,并用力学和动态力学(Dynamic mechanical analysis,DMA)测试仪分析了交联对宏观力学及其动态力学性能的影响。结果表明,辐射交联使胶乳粒子体积收缩,并随吸收剂量增加胶膜的体积溶胀倍率(Q_v)和交联点间平均分子量(M_c)减小;而交联密度(V_e)和凝胶含量增大。随着交联密度的增加,抗张强度和断裂伸长率降低,杨氏模量(E)和硬度(Shore A)则增大;其弹性模量(E′)增加,而动态损耗峰(Tanδ)变窄。PBL辐射交联行为在吸收剂量低于200kGy范围内符合Charlesby-Pinner关系式,为无规交联。 Fully vulcanized polybutadiene rubber particles (FVBR) were prepared by polybutadiene latex (PBL) vulcanization induced by 60^Co γ-rays irradiation, and the effect of absorbed dose on crosslinking behavior was studied. Mean diameter, diameter distribution and morphology of the particles in the PBL irradiated at different doses as well as in the FVBR were characterized by laser particle analyzer and AFM. The crosslinking effect on the mechanical properties of the films, by casting from PBL at different doses correspondingly, was evaluated by mechanical and dynamic mechanical analysis (DMA) respectively. The results showed that the diameter and swelling property decreased with absorbed dose, while crosslink density and gel fraction increased. Moreover, the decrease of the tensile strength and elongation at break, the increase of the hardness in shore A and young's modulus (E), and the increase of storage modulus (E') and narrowing of loss tangent peak (Tan δ) were all accounted for the increment of crosslinking. The Charlesby-Pinner equation fits well with the PBL vulcanization in the range of absorbed doses from 0 to 200kGy.
出处 《辐射研究与辐射工艺学报》 CAS CSCD 北大核心 2007年第6期350-354,共5页 Journal of Radiation Research and Radiation Processing
基金 国家863计划基金(2002AA333040) 黑龙江省科技攻关项目(GC05A411)资助
关键词 辐射交联 硫化 聚丁二烯胶乳 Radiation crosslinking, Vulcanization, Polybutadiene latex
  • 相关文献

参考文献13

  • 1Chaudhari C V, Bhardwaj Y K, Patil N D, et al. Radiat Phys Chem, 2005, 72:613-618.
  • 2Sabharwal S, Das T N, Chaudhari C V, et al. Radiat Phys Chem, 1996, 48(4): 505-510.
  • 3Jayasuriya M M, Makuuchi K, Yoshi F. Euro Poly J, 2001, 37:93-98.
  • 4QIAO J L, WEI G S, ZHANG X H, et al. US Patent 6, 423, 760, 2002.
  • 5Huang F, Liu Y, Zhang X, et al. Macromol Rapid Commun, 2002, 2,3(13): 786-790.
  • 6东为富,张师军,刘轶群,张晓红,黄帆,高建明,魏根栓,乔金梁.橡塑共混中橡胶相形态控制的研究进展——一种橡塑共混新技术[J].中国塑料,2003,17(5):1-6. 被引量:5
  • 7Perera R, Albano C, Gonzalez J, et al. Polym Degrdn Stab, 2004, 85:741-750.
  • 8Marcillaa A, Garcia-Quesadaa J C, Hernandeza J, et al. Polymer Testing, 2005, 24:925-931.
  • 9Peng J, Wang M, Qiao J, et al. Radiat Phys Chem, 2005, 72:739-743.
  • 10Flory P J. Principles of polymer chemistry. New York: Cornell University Press, 1953.463-576.

二级参考文献24

  • 1R. Paul Donald, Bucknall Clive B. Polymer Blends[ M]. Wiley: New York, 2000,2.
  • 2S. Wu. Chain Structure, Phase Morphology and Toughness Relationships in Polymers and Blends [J]. Polymer Engineering and Science, 1990,30 (13) : 753.
  • 3Y. Okamoto, et al. Impact Improvement Mechanism of HIPS with Bimodal DistriBution of Rubber Particle Size[J]. Macromolecules, 1991,24 (20) : 5 639.
  • 4Charles B. Arends. Polymer Toughening[M]. Marcel Dekker,Inc., 1999.
  • 5A. Y. Coran and R. P. Patel. Rubber-Thermoplastic Compositions. Part I. EPDM-Polyprpylene Thermoplastic Vulcanizates[J]. Rubber Chem Technol, 1980,53( 1 ) : 141 - 150.
  • 6Z. Zhang and J. Qiao. Quantitative Prediction of Particle Size of Dispersed Phase in Elastorner-Plastic Blending System[J].Polymer Engineering and Science, 1991,31(21): 1 553.
  • 7J. Karger-Kocsis, A. Kallo, V. N. Kuleznev. Scanning Electron Microscopic Investigations of Particle Size and Particle Size Distribution of EPDM Impact Modifier in PP/EPDMBlends[J]. Acta. Polym., 32(9 ) : 578-581.
  • 8H.P. Schreiber, A. Olguin. Aspects of Dispersion and Flow in Thermoplastic-Elastomer Blends [ J ]. Polym. Eng., 1983,23(3) : 129-134.
  • 9N. Tokita. Analysis of Morphology Formation in Elastorner Blends[ J ]. Rubber Chem. Technol., 1977, 50 (2) : 292-300.
  • 10J. Qiao, et al. Fully Vulcanized Powdery Rubber Having a Controllable Particle Size, Preparation and Use Thereof[P],USP 6,423,760.

共引文献4

同被引文献15

  • 1杨万林,董宏伟.丁苯胶乳的应用[J].弹性体,1996,6(3):51-54. 被引量:6
  • 2Shaltout N A, Abou Zeid M M, Mohamed M A, et al. Journal of Macromolecular Science, Part A: Pure and Applied Chemistry, 1520-5738, 2008, 45(3): 225-231.
  • 3Haque M E, Dafader N C, Akhtar F, et al. Radiat Phys Chem, 1996, 48 (4): 505-510.
  • 4Jayasuriya M M, Makuuchi K, Yoshi F. Euro Poly J, 2001 37:93-98.
  • 5Zhang L Q, Li T, Lu Y L, et al. J Appl Polym Sci, 2006, 100:3673-3679.
  • 6Zhang X H, Wei G S, Liu Y Q, et al. Macromol Symp, 2003, 193:261-276.
  • 7Perera R, Albano C, Gonzalez J, et al. Polym Degrdn Stab, 2004, 85:741-750.
  • 8Liu Y G, Huang Y D, Zhang C W, et al. Radiat Phys Chem, 2008, 77:806-810.
  • 9Flory P J. Principles of polymer chemistry, New York: Cornell University Press, 1953:463-576.
  • 10Charlesby A. Radiat Phys Chem, 1977(9): 17-23.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部