期刊文献+

PtNi/C催化剂的合成及其对甲醇氧化的电催化性能 被引量:6

Synthesis of PtNi/C electrocatalysts and their electrocatalytic performance for methanol electrooxidation
下载PDF
导出
摘要 用液体多元醇方法合成了PtNi/C纳米电催化剂,并对其进行了XRD和TEM表征.讨论了合成溶液的pH值对铂镍合金纳米粒子的粒径影响.结果表明,随着合成溶液pH值的增加,PtNi合金纳米粒子的粒径变小,并且更加均匀.当合成溶液的pH值为4.0、5.5、7.5和9.0时,铂镍合金纳米粒子的平均粒径分别是4.2、3.7、3.3和3.0 nm.用循环伏安和恒电位极化表征了PtNi/C纳米电催化剂在室温下对甲醇氧化的电催化性能.结果表明,当合成溶液的pH值为9.0时,合成的PtNi/C催化剂对甲醇的氧化具有较好的电催化性能,比Pt/C具有更稳定的电催化性能. PtNi/C nanosized electrocatalysts were synthesized by a liquid polyol method, and the products were characterized by X-ray diffraction (XRD) and transmission electron microscopy(TEM). The effects of the synthesis solution pH on the size and distribution of PtNi nanoparticles were discussed. PtNi nanoparticles become smaller and more uniform with the increase of synthesis solution pH. When the synthesis solution pH was 4.0, 5.5, 7.5 and 9.0, the mean size of PtNi nanoparticles was 4.2, 3.7, 3.3 and 3.0 nm, respectively. The electrocatalytic activity of the PtNi/C electrocatalyst for methanol electrooxidation was characterized by the cyclic voltrametry and chronoamperometry. The results indicated that when the synthesis solution pH is 9.0, the PtNi/C electrocatalyst exhibits better electrocatalytic performance and more stable electrocatalytic activity than Pt/C catalyst.
机构地区 浙江大学化学系
出处 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2007年第12期2107-2111,共5页 Journal of Zhejiang University:Engineering Science
基金 教育部博士点基金资助项目(20050335086) 浙江省自然科学基金资助项目(Y404265) 教育部回国留学人员科研启动基金资助项目(2004-527)
关键词 PtNi纳米粒子 乙二醇 甲醇电氧化 电催化性能 PtNi nanoparticles ethylene glycol methanol electrooxidation electrocatalytic performances
  • 相关文献

参考文献19

  • 1LIU F, LEE J Y, ZHOU W J. Template preparation of multisegment PtNi nanorods as methanol electro-oxidation catalysts with adjustable bimetallic pair sites [J]. Journal of Physical Chemistry B, 2004, 108(46) : 17957 - 17963.
  • 2REDDINGTON E, SAPIENZA A, GURAU B, et al. Combinatorial electrochemistry: a highly parallel, optical screening method for discovery of better electrocatalysts [J]. Science, 1998, 280(5370) : 1735 - 1737.
  • 3DEIVARAJ T C, LEE J Y. An alkaline direct borohydride fuel cell with hydrogen peroxide as oxidant [J] .Journal of Power Sources, 2004, 143(1/2) : 1 - 7.
  • 4韩小斐,陈卫祥,赵杰,聂秋林.微波合成PtRu/CNTs催化剂及其电催化性能[J].浙江大学学报(工学版),2005,39(12):1871-1874. 被引量:6
  • 5WANG K, GASTEIGER H A, MARKOVIC N M, et al. On the reaction pathway for methanol and carbon monoxide electrooxidation on Pt-Sn alloy versus Pt-Ru alloy surfaces [J]. Eiectrochimica Acta, 1996, 41(16). 2587 - 2593.
  • 6BENSEBAA F, FARAH A A, WANG D S, et al. Microwave synthesis of polymer-embedded Pt-Ru catalyst for direct methanol fuel cell [J]. Journal of Physical Chemistry B, 2005, 109(32): 15339-15344.
  • 7YU P, PEMBERTON M, PLASSE P. PtCo/C cathode catalyst for improved durability in PEMFCs [J]. Journal of Power Sources, 2005, 144(1): 11 -20
  • 8XIONG L, KANNAN A M, MANTHIRAM A. Pt-M (M= Fe, Co, Ni and Cu) electrocatalysts synthesized by an aqueous route for proton exchange membrane fuel cell [J]. Electrochemistry Communications, 2002, 4 (11): 898-903.
  • 9ISHIKAWA Y, LIAO M S, CABRERA C R. Oxidation of methanol on platinum, ruthenium and mixed Pt-M metals (M=Ru, Sn): a theoretical study [J]. Surface Science, 2000, 463(1): 66-80.
  • 10SUNG Y E, KIM H, THOMAS S, et al. Potentialdependent infrared absorption spectroscopy of adsorbed CO and X-ray photoelectron spectroscopy of arc-melted single-phase Pt, PtRu, PtOs, PtRuOs, and Ru electrodes [J]. Journal of Physical Chemistry B, 2000, 104 (15) :3518 - 3531.

二级参考文献12

  • 1TU W X, LIU H F. Rapid synthesis of nanoscale colloidal metal clusters by microwave irradiation [J]. Journal of Materials Chemistry, 2000, 10:2207 - 2311.
  • 2TAKASU Y, ITAYA H Y, IWAZAKI T Y, et al. Size effects of ultrafine Pt-Ru particles on the electrocatalytic oxidation of methanol [J]. Chemistry Communication,2001, 341 - 342.
  • 3CHE G L, LAKSHMI B B, MARTIN C R, et al. Metalnanocluster-filled carbon nanotubes: Catalytic properties and possible applications in electrochemical energy storage and production [J]. Langmuir, 1999, 15: 750-758.
  • 4LORDI V, YAO N, WEI J. Method for supporting platinum on single-walled carbon nanotubes for a selective hydrogenation catalyst [J]. Chemistry of Materials,2001, 13:733 - 737.
  • 5LI W Z, LIANGC H, QIU J S, et al. Carbon nanotubes as support for cathode catalyst of a direct methanol fuel cell [J]. Carbon, 2002, 40:791-794.
  • 6LI W Z, LIANG C H, ZHOU W J, et al. Preparation and characterization of multiwalled carbon nanotube-supported platinum for cathode catalysts of direct methanol fuel cells [J]. Journal of Physics Chemistry B, 2003,107:6292 - 6299.
  • 7XUE B, CHEN P, HONG Q, et al. Growth of Pd, Pt,Ag and Au nanoparticles on carbon nanotubes [J]. Journal of Materials Chemistry, 2001, 11:2387 - 2381.
  • 8YU W Y, TU W X, LIU H F. Synthesis of nanoscale platinum colloids by microwave dielectric heating [J].Langmuir, 1999, 15:6 - 9.
  • 9WANG LY, TU JP, CHEN WX, et al. Friction and wear behavior of electroless Ni-based CNT composite coatings [J]. Wear, 2003, 254: 1289- 1293.
  • 10BOXALL D L, DELUGA G A, KENIK E A, et al.Rapid synthesis of a Pt1 Ru1/carbon nanocomposite using microwave irradiation: A DMFC anode catalyst of high relative performance [J]. Chemistry of Materials,2001, 13: 891-900.

共引文献5

同被引文献46

引证文献6

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部