期刊文献+

基于遗传神经网络的零件图像非线性校正

Nonlinearity Rectification of Part Image Based on Genetic Neural Network
下载PDF
导出
摘要 提出了基于遗传神经网络校正非线性失真图像的方法。首先,用遗传算法优化神经网络的权值,构成遗传神经网络。然后,从标准的矩形栅格的失真图像中提取特征样本,样本的坐标用于训练遗传神经网络,标准矩形栅格中的样本的坐标作为目标输出。最后,以失真图像所有像素的坐标作为遗传神经网络的输入;其输出的坐标经过灰度级插值,实现图像的非线性校正。实验结果表明,文中提出的方法是有效的。 A method for rectifying nonlinearity geometric distorted images based on genetic neural network is presented. Firstly, the genetic algorithm is used to optimize the weights of neural network and the genetic neural network is constructed. Then, the sample coordinates are extracted from a geometric distorted rectangular grid and are used to train the genetic neural network, and the sample coordinates from the original rectangular grid are used as the desired output values. Finally, all pixel coordinates from a distorted part image are regarded as the inputs of the genetic neural network and the gray level for all pixel coordinates of genetic neural network output is determined by gray-level interpolation to obtain non-linearity rectification of part image. Experimental results show that the method is effective for nonlinearity rectification of the part image.
出处 《数据采集与处理》 CSCD 北大核心 2007年第4期407-410,共4页 Journal of Data Acquisition and Processing
基金 江苏省教育厅自然科学研究计划(05KJB460036)资助项目 江苏省青蓝工程学术带头人资助项目
关键词 非线性校正 遗传算法 BP神经网络 灰度级插值 nonlinearity rectification genetic algorithm BP neural network gray-level interpolation
  • 相关文献

参考文献5

二级参考文献15

  • 1Kanad T, Suzuki S. Evaluation of minimum zone flatness by means of nonlinear optimization techniques and its verification[J]. Prec Eng, 1993, 15(2) :93 - 99.
  • 2Huang S T, Fan K C, Wu J H. A new minimum zone method for evaluating flatness errors [J]. Prec Eng, 1993,15(1):25-32.
  • 3Rudolph G. Convergence properties of canonical genetic algorithms [J]. IEEE Trans on Neural Networks, 1994,5(1) :96- 101.
  • 4Eshelman L J, Schaffer J D. Real-coded genetic algorithms and interval-schemata[C]. Foundations of Genetic Algorithms2, Morgan Kaufman Publishers,1993. 187- 202.
  • 5Satoh H, Yamamura M, Kobayashi S. Minimal generation gap model for GAs considering both exploration and exploitation[C]. Proc of IIZUKA. 1996.494 - 497.
  • 6Wang L L, Tsai W H. Camera calibration lines for 3D computer vision [ J ] . IEEE Transactions on Pattern Analysis Machine Intelligence, 1991,13(4) :370 ~ 376.
  • 7Chen C H. Neural networks in pattern recognition and their applications[ M]. Singapore: World Scientific ,1991.
  • 8温秀兰,方福来,田朝平.用封闭法测量平板平面度[J].计量技术,1999(9):34-36. 被引量:2
  • 9廖士中,高培焕,苏艺,王大鹏.一种光学镜头摄像机图象几何畸变的修正方法[J].中国图象图形学报(A辑),2000,5(7):593-596. 被引量:88
  • 10刘永超,陈明.形位误差的进化算法[J].计量学报,2001,22(1):18-22. 被引量:29

共引文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部