期刊文献+

基于模糊综合和最优小波包分解的信号多类分类 被引量:1

Audio Multi-Classification Based on Fuzzy Integration and Optimal Wavelet Packet Decomposition
下载PDF
导出
摘要 为了对音频信号进行有效地分类,提出了基于模糊综合和最优小波包分解的信号多类分类算法。首先,对音频信号进行窗化处理;其次,基于模糊集对信号进行最优小波包分解,并用最优小波包和信号感知特性来提取音频信号特征,在每一个小波子空间用支持向量机对信号进行多类分类;最后,用模糊积分将分类结果进行综合,得出最终类。试验采用不同的核函数和算法参数验证了本文算法的效果,结果表明本算法速度较快、精确度高。 Signal classification is more important in signal process. To perform the effective audio signal classification, an algorithm of the signal feature extraction and the classification is presented based on fuzzy the integration and the optimal wavelet packet. Firstly, window audio signals are proceeded. Secondly, the optimal WP (Wavelet packet) decomposition is used for signals based on the fuzzy set. And the feature of input audio signal is extracted using the optimal WP and perceptual characteristics. Thirdly, this algorithm employs SVM (Support vector machines ) to multi-classify signals in each wavelet subspaces. Finally classification results are integrated by using fuzzy integral. Experiments using different kernel functions and algorithm parameters prove the effect of the algorithm. Results indicate that the proposed algorithm has characteristics of faster speed and higher accuracy.
出处 《数据采集与处理》 CSCD 北大核心 2007年第4期458-462,共5页 Journal of Data Acquisition and Processing
关键词 小波包 支持向量机 特征提取 信号分类 模糊综合 wavelet packet support vector machine (SVM) feature extraction signal classification fuzzy integration
  • 相关文献

参考文献12

  • 1Wold E, Blum T, Keislar D, et al. Content based classification, search and retrieval of audio [J]. IEEE Multimedia, 1996, 3(3): 27-36.
  • 2Li S Z. Content-based audio classification and retrieval using the nearest feature line method [J].IEEE Transactions on Speech and Audio Processing, 2000, 8(5): 619-625.
  • 3Vapnik V N. Statistical learning theory [M]. New York: Wiley, 1998.
  • 4史泽林,李德强,黄莎白.基于模糊准则的小波特征选择在人脸识别中的应用[J].信息与控制,2005,34(1):50-53. 被引量:2
  • 5Li D Q, Pedrycz W, Pizzi N J. Fuzzy wavelet packet based feature extraction method and its application to biomedical signal classification[J]. IEEE Transactions on Biomedical Engineering, 2005, 52 (6): 1132-1139.
  • 6Chen S H, Wang J F. Noise-robust pitch detection method using wavelet transform with aliasing compensation [J]. IEEE Transactions on Image Signal Process, 2002, 149(6): 327-334.
  • 7鄢卉,李仁发.语音信号倒谱特征提取建模与仿真[J].系统仿真学报,2005,17(7):1774-1778. 被引量:8
  • 8Lin C C, Chen S H. Audio classification and categorization based on wavelets and support vector machine [J]. IEEE Transactions on Speech and Audio Processing, 2005, 13(5): 644-651.
  • 9徐勋华,王继成.支撑向量机的多类分类方法[J].微电子学与计算机,2004,21(10):149-152. 被引量:27
  • 10Murofushi T, Sugeno M. An interpretation of fuzzy measures and the integral as an integral with respect to a fuzzy measure [J]. Fuzzy Sets System, 1988, 29(1):201-227.

二级参考文献14

  • 1Edward.A.Lee.Overview of the Ptolemy Project[EB/OL] http://ptolemy.eecs.Berkeley.edu/publications/papers/03/overview/,2003-07-02.
  • 2Hylands,E.A.Lee,J.Liu,et.al.Heterogeneous Concurrent Modeling and Design in Java[EB/OL].http://Ptolemy.eecs.berkeley.edu/ publications/papers/03/ptIIDesignIntro,2003-07-16.
  • 3Johan Eker,J(o)rn W Janneck,Edward Lee,JieLiu,et al.Taming Heterogeneity-the Ptolemy Approach [C].Proceedings of the IEEE,2002.
  • 4杨行峻.语音信号处理[M].北京:电子工业出版社,1993..
  • 5Liu C, Wechsler H. Gabor feature based classification using the enhanced fisher linear discriminate model for face recognition [J].IEEE Transactions on Image Processing, 2002, 11 (4) :467 ~476.
  • 6Bezdek J C. Pattern Recognition with Fuzzy Objective Function Algorithms [ M ]. New York: Plenum, 1981.
  • 7Pittner S, Kamarthi S V. Feature extraction from wavelet coefficients for pattern recognition task [ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1999, 21 (1) :83 ~88.
  • 8Belhumeur P N, Hespanha J P, Kriegman D J. Eigenfaces vs.fisherfaces: recognition using class specific linear projection [ J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1997,19(7) :711 ~720.
  • 9Wickerhauser M V. Adapted Wavelet Analysis from Theory to Software [M]. Natick, MA,USA:Peters A K Ltd. , 1994.
  • 10Pedrycz W. Fuzzy sets in pattern recognition [J]. Pattern Recognition, 1990, 2(3) :121 - 146.

共引文献32

同被引文献22

  • 1彭敏放,何怡刚,王耀南,贺建飚.模拟电路的融合智能故障诊断[J].中国电机工程学报,2006,26(3):19-24. 被引量:39
  • 2张维强,徐晨,宋国乡.模拟电路故障诊断的小波包预处理神经网络改进算法[J].信号处理,2007,23(2):204-209. 被引量:6
  • 3AMINIAN F,AMINIAN M,COLLINS H W.Analog fault diagnosis of actual circuits using neural networks[J].IEEE Transactions on Instrumentation and Measurement,2002,5l(3):544-550.
  • 4CATELANI M.FORT A.Soft fault detection and isolation in analog circuits:some results and a comparison between a fuzzy approach and radial basis function network[J].IEEE Transactions on instrumentation and Measurement,2002,51(2):196-202.
  • 5BILSKI P,WOJCIECHOWSKI J M.Automated diagnostics of analog systems using fuzzy logic approach[J].IEEE Transactions on Instrumentation and Measurement,2007,56(6):2175-2185.
  • 6HE Y,TAN Y,SUN Y.Wavelet neural network approach fur fault diagnosis of analogue circuits[J].IEEE Proceedings-Circuits Devices and Systems,2004(151):379-384.
  • 7WANG AN N,LIU J F,YUAN W J,et al.Algorithms comparison of feature extraction and multi-class classification for fault diagnosis of analog circuit[J].Proceeding of the 2007 International Conference on Wavelet Analysis and Recognition,Beijing,2-4 Nov 2007:566-572.
  • 8WANG P,YANG S.A new diagnosis approach for handling tolerance in analog and mixed-signal circuit by using fuzzy math[J].IEEE Transactions on Circuits and Systems-Ⅰ:Fundamental Theory and Applications,2005,52(10):2118-2127.
  • 9TANG J Y,SHI Y B,ZHANG W.Analogue electronic circuit fault diagnosis based on hierarchical support vector machine and dempster-shafer theory[C].Tthe Eighth Intemational Conference on Electronic Measurement and Instruments.2007(3):565-570.
  • 10AMINIAN M,AMINIAN F.A modular fault-diagnostic system for analog electronic circuits fault using neural networks with wavelet transform as a preprocessor[J].IEEE Transaction on Instrumentation and Measurement,2007,56(5):1546-1554.

引证文献1

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部