期刊文献+

CHEN系统同步及其在保密通讯中的应用 被引量:1

Synchronization of the CHEN system and its application in secure communication
下载PDF
导出
摘要 基于稳定性理论,用自适应控制的方法构造了一个同步系统,实现对任意传输信号的及时准确恢复;用此方法对CHEN系统进行了数值仿真,结果表明系统能很好地达到同步。将该系统应用到保密通讯中,信息信号和混沌信号相加构成混沌传输信号,在接收端信息信号能被有效复原,仿真研究表明该通信方案确实可行。 A synchronizing system is created using the self-adaptive control approach which is based on the stability theory, and it can be used to restore any transmitted signal timely and accurately. Simulation of the CHEN system is conducted and the simulation results show that with the help of the self-adaptive control approach, the chaotic system can be synchronized effectively. The method is applied to secure communication. The information signal is added to the chaotic signal to produce the chaotic transmitted signal. The information signal is restored at the receiver effectively. The simulation results indicate that the communication scheme is truly feasible.
作者 周琦
出处 《合肥工业大学学报(自然科学版)》 CAS CSCD 北大核心 2007年第12期1604-1606,共3页 Journal of Hefei University of Technology:Natural Science
关键词 CHEN系统 同步 保密通讯 信息信号 CHEN system synchronization secure communication information signal
  • 相关文献

参考文献8

  • 1Carrol T L, Pecora L M. Synchronization in chaotic systems[J]. Physics Review Letters, 1990,64(8): 821-824.
  • 2Li Shihua, Tian Yuping. Finite time synchronization of chaotic systems[J]. Chaos, Solitons and Fractals, 2003,15 (2) :303-310.
  • 3卢殿臣,宋娟,田立新.不同系统之间的混沌同步[J].江苏大学学报(自然科学版),2006,27(3):283-286. 被引量:8
  • 4Ricardo F. Synchronization of chaotic systems with different order [J]. Physical Review E, 2002, 65:261-267.
  • 5Li Zhigang, Xu Daolin. A secure communication scheme using projective chaos synchronization [J]. Chaos, Solitons & Fractals, 2004,22(2):477-481.
  • 6Sun J T, Zhang Y P, Wu Q D. Impulsive control for the stabilization and Lorenz systems [J]. Physics Letters A, 2002,298(23) : 153-160.
  • 7Yang X S, Duan C K, Liao X X. A note on mathematical aspects of drive response type sysnchronization[J]. Chaos, Solitons and Fractais, 1999,10(9) : 1457- 1462.
  • 8Jin L, Zhou T S, Zhang S C. Chaos synchronization between linearly coupled chaotic systems [J]. Chaos, Solitons & Fractals, 2002,14(2) : 529-541.

二级参考文献7

共引文献7

同被引文献13

  • 1Pecora L M, Carroll T L. Synchronization in chaotic systems[J]. Phys Rev Lett, 1990,64 : 821 -824.
  • 2Pecora L M,Carroll T L. Dr!ving systems with chaotic signals[J]. Phys Rev A, 1991,44 : 2374- 2383.
  • 3Chavez M, Hwang D U, Amann A, et al. Synchronizing weighted complex networks[J]. Chaos, 2006,16 ( 1 ) : 15106.
  • 4Chavez M, Hwang D U, Amann A, et al. Synchronization is enhanced in weighted complex networks [ J]. Phys Rev Lett, 2005,94(3) : 218701.
  • 5Motter A E, Zhou C S, Kurths J. Enhancing complex-network synchronization[J ]. Europhys Lett, 2005, 69 : 334- 340.
  • 6Ma Zhongjun, Liu Zengrong, Zhang Gang. A new method to realize cluster synchronization in connected chaotic networks[J]. Chaos, 2006,16 (2) : 023103.
  • 7Ma Zhongjun, Zhang Gang, Wang Yi, et al. Cluster synchronization in star-like complex networks[J]. Phys A: Math Theor,2008,41 : 155101.
  • 8Li X, Chen G R. Synchronization and desynchronization of complex dynamical networks: an engineering viewpoint [ J ]. IEEE Trans Circuits Syst-Ⅰ, 2003, 50 (11) : 1381-1390.
  • 9汪晓凡,李翔,陈关荣.复杂网络理论及其应用[M].北京:清华大学出版社,2006:10-100.
  • 10Lu J H, Yu X H, Chen G R. Chaos synchronization of general complex dynamical networks[J]. Physica A, 2004, 334:281-302.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部