期刊文献+

半线性抛物型方程组解的整体存在性与爆破速率估计 被引量:3

The existence of global solution and blow up rate estimates of solution for semi-linear parabolic systems
下载PDF
导出
摘要 研究了具有非线性热源的半线性抛物型方程组的齐次neumann问题解的爆破性质.利用上下解方法得到了解整体存在的条件与爆破条件,并利用Friedmann-Mcleod方法建立了爆破速率估计. The blow up properties of solutions for semi-linear parabolic systems with nonlinear sources, subject to null Neumann boundary conditions are studied. The existence of global solution and blow up of the solution are obtained by using upper and lower solution method,and the uniform blow-up rate estimate is established by using Friedman-Mcleod method.
出处 《纯粹数学与应用数学》 CSCD 北大核心 2007年第4期433-438,共6页 Pure and Applied Mathematics
基金 国家自然科学基金资助项目(10371098) 西安工程大学校管基金项目(2007XG28)
关键词 半线性抛物型方程组 整体解 爆破 爆破速率估计 semi-linear parabolic systems, global solution, blow up ,blow up rate estimate
  • 相关文献

参考文献3

  • 1Zheng S NoZhao L Z. Chen F. Blow-up rates in a parabolic system of ignition model[J]. Nonlinear Anal. ,2002,51: 663-672.
  • 2Li Huiling,Wang Mingxin. Blow up properties for parabolic systems with localized nonlinear terms[J]. App. Math. Letters, 2004,17: 771-778.
  • 3Pao C V. Nonlinear Parabolic and Elliptic Equations[M]. New York: Plenum Press, 1992.

同被引文献35

  • 1李静,赵安娜.带非线性边界条件热方程组正解的爆破速率估计[J].郑州大学学报(理学版),2005,37(4):17-21. 被引量:3
  • 2容跃堂,马福敏.一类非线性扩散方程解的blow up速率估计[J].纯粹数学与应用数学,2006,22(2):284-288. 被引量:1
  • 3刘其林,李玉祥,高洪俊.非局部反应扩散方程组的爆破性质[J].数学学报(中文版),2006,49(4):869-882. 被引量:5
  • 4Anderson J R, Deng K. Global existence for degenerate parabolic equations with a non-local forcing[J]. Math. Anal. Methods Appl. Sci.,1997,20:1069-1087.
  • 5Galaktionov V A, Levine H A. A general approach to critical Fujita exponents in nonlinear parabolic problems[J]. Nonlinear Anal.,1998,34:1005-1027.
  • 6Souplet P. Blow-up in nonlocal reaction-diffusion equations[J]. SIAM J. Math. Anal.,1998,29:1301-1334.
  • 7Souplet P. Uniform blow-up profiles and boundary behavior for diffusion equations with nonlocal nonlinear source[J]. J. Differential Equations.,1999,153:374-406.
  • 8Galaktionov V A, Kurdyumov S P, Samarskii A A. A parabolic system of quasi-linear equations I[J]. Differential Equations,1983,19:1558-1571.
  • 9Galaktionov V A, Kurdyumov S P, Samarskii A A. A parabolic system of quasi-linear equations II[J]. Differential Equations, 1985,21:1049-1062.
  • 10Deng W B. Global existence and finite time blow up for a degenerate reaction-diffusion system[J]. Nonlinear Anal,2005,60:977-991.

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部