摘要
研究ρ混合阵列行和的弱收敛性、Lp敛性和完全收敛性,目的是把独立阵列行和的相关极限定理推广到ρ混合阵列行和的情形,在{Xnk;1≤k≤kn↑∞,n∈N}是Cesaro一致可积的相关条件下,利用截尾、概率不等式等手法,分别获得ρ混合阵列行和的弱收敛性、Lp收敛性和完全收敛性定理,推广了前人的一系列结果.
The week law of large numbers, Lpconvergence and complete convergence of sums of ρ mixing random matrix sequences are studies. Our main aim is to generalize corresponding limit results for independent random matrix sequences to ρ mixing random matrix sequences. Under the condition that the {Xnk;1≤k≤kn↑∞,n∈N}is Cesaro uniformly integrable, the authors are able to give the week law of large numbers, Lp convergence and complete convergence of sums of ρ mixing random matrix sequences, which generalize the results of a series of papers.
出处
《纯粹数学与应用数学》
CSCD
北大核心
2007年第4期458-462,共5页
Pure and Applied Mathematics
基金
国家自然科学基金(10661006)
广西新世纪十百千人才工程基金(2005214)
广西自然科学基金资助项目(0728121)
关键词
ρ混合阵列行和
收敛性
一致可积
sums of ρ mixing random matrix sequences, convergence properties, uniformly integral