期刊文献+

一个Mini Max定理和一类二阶Hamilton系统的解的唯一性5 被引量:1

A Mini Max theorem and the uniqueness of solution of a class of second order hamilton systems
下载PDF
导出
摘要 推广了Stepan A.Tersian的关于g(u)=2-1(Au,u)-Φ(u)型泛函的一个Mini Max定理.利用这一推广了的Mini Max定理,研究了一类受迫振动下二阶Hamilton系统的边界值问题的解,获得了这类二阶Hamilton系统边界值问题的解的一个唯一性定理. A Mini Max theorem for the functionals of the type g(u)= 2^-1 (Au,u)-Ф(u) due to Stepan A. Tersian was generalized. The solution of a boundary value problem of second order Hamilton systems under forced oscillations was probed by employing the generalized Mini Max theorem and a uniqueness result of solution of a boundary value problem of second order Hamilton systems was presented.
出处 《纯粹数学与应用数学》 CSCD 北大核心 2007年第4期480-486,共7页 Pure and Applied Mathematics
关键词 MINI Max定理 HAMILTON系统 HILBERT空间 鞍点 Nemytskii算子 Mini Max theorem, Hamilton System, solution, Hilbert space, saddle point, Nemytskii operator
  • 相关文献

参考文献7

  • 1Tersian Stepan A. A Mini Max theorem and applications to nonresonance problems for semilinear equations [J]. Nonlinear Analysis TMA, 1986,10(7): 651-668.
  • 2Browder F. Probléms Non-Linears[M]. Montreal :Les Presses delUniversité de Montreal, 1966.
  • 3Amarm H. The unique solvability of semilinear operator equations in Hilbert spaces[J]. J. Math. Pure. Appl ,1982,61:149-175.
  • 4Ekeland I, Temam R. Convex Analysis and Variational Problems [M]. Amsterdam: North-Holland, 1976.
  • 5尹群,洪友诚.一类二阶Hamilton系统的受迫振动[J].数学年刊(A辑),1994,1(6):701-705. 被引量:6
  • 6Bers L, John F,Seheehter M. Partial Differential Equations[M]. New York :Interseienee, 1964.
  • 7Palais R. Seminar on the Atyah-Singer Index Theorem[M]. New Jersey:Princeton University Press, 1965.

共引文献5

同被引文献11

  • 1Lazer A C,Landesman E M, Meyer D R. On saddle point problems in the calculus of variations,the Ritz algorithm and mon-otone convergence[ J]. J Math Anal Appl, 1975 ,52(3 ) :594-614.
  • 2Raul F Manasevich. A minimax theorem[ J]. J Math Anal Appl, 1982,90( 1 ) :62-71.
  • 3Raul F Manasevich. A non variational version of a max-min principle[ J]. Nonlinear Anal TMA,1983,7(6) : 565-570.
  • 4Peter W Bates, Alfonso Castro. Existence and uniqueness for a variational hyperbolic system without resonance[ J]. Nonlin-ear Anal TMA,1980,4(6) :1 151-1 156.
  • 5Shen Zuhe. On the periodic solution to the Newtonian equation of motion[ J].Nonlinear Anal TMA,1989,13(2) : 145-150.
  • 6Shen Zuhe, Neumaier A, Eiermann M C. Solving minimax problems by interval methods[J]. BIT, 1990,30(4) *.742-751.
  • 7Stepan A Tersian. A minimax theorem and applications to nonresonance problems for semilinear equations[ J]. Nonlinear A-nal TMA,1986,10(7) :651468.
  • 8Huang Wenhua, Shen Zuhe. Two minimax theorems and the solutions of semilinear equations under the asymptotic non-uni-formity conditions[ J].Nonlinear Anal TMA,2005 ,63(8) :1 199-1 214.
  • 9Huang Wenhua. Minimax theorems and applications to the existence and uniqueness of solutions of some differential equations[J]. J Math Anal Appl,2006,322(2) :629秘.
  • 10Huang Wenhua. A minimax theorem for the quasi-convex functional and the solution of the nonlinear beam equation[ J].Nonlinear Anal TMA,2006,64(8) :1 747-1 756.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部