期刊文献+

关于丢番图方程x^2-2p=y^n的解

On the solution of the Diophantine equations x^2-2p=y^n
下载PDF
导出
摘要 利用初等方法讨论了丢番图方程x2-2p=yn,n>1,得到当素数p满足一定条件时,存在一类方程无解. We discuss the Diophantine equationsx2-2p=y^n,n〉1 with p under a given condition by using the elementary methods, then there exists a class of equations with no solution.
机构地区 西北大学数学系
出处 《纯粹数学与应用数学》 CSCD 北大核心 2007年第4期556-560,共5页 Pure and Applied Mathematics
关键词 丢番图方程 方程的解 同余 Diophantine equation, solutions ,congruence
  • 相关文献

参考文献6

二级参考文献8

  • 1Hua L K. Some results in the additive prime number theory[J]. Quart. J. Math. (Oxford),1938,9:68-80.
  • 2Yu V Linnik. Hardy-Littlewood problem on the representation as the sum of a prime and two squares[J]. Dokl Akad Nank SSSR, 1959,124:29-30.
  • 3Yu V Linnik. An asymptoticc formula in an additive problem of Hardy and Littlewood[J]. Lzv Akad Nauk SSSR, Ser Mat,1960,24:629-706.
  • 4Hardy G and Littlewood J. Some problems of "partitio numerorum" III : On the expression of a number as a sum of primes[J]. Acta Math., 1923,44:1-70.
  • 5Jianya Liu, Ming-Chit Liu and Tao zhan. Squares of primes and powers of 2[J]. Monatsh. Math. ,1999,128:283-313.
  • 6Scott T. Parsell. Diophantine approximation with primes and powers of two[J]. New York Journal of Mathematics, 2003,9: 363- 371.
  • 7Jianya Liu and Ming-Chit Liu. Representation of even integers as sums of squares of primes and powers of 2[J]. Journal of Number Theory,2000,83(2):202-225.
  • 8Apstol T M. Introduction to Analytic Number Theory[M]. New York:Springer-Verlag,1976.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部