期刊文献+

热镀锌钢材在稀盐酸中的缓蚀和量子化学研究 被引量:10

Corrosion inhibition and quantum chemistry studies of hot dip galvanized steels in diluted HCl solutions
下载PDF
导出
摘要 通过量子化学计算、质量损失测试、电化学测试和扫描电镜等研究烟酸、吖啶和小檗碱等杂环化合物对热镀锌钢材在盐酸介质中的缓蚀作用。量子化学计算结果表明,3种化合物均具有多个吸附活性中心,且其前线轨道与镀层表面锌原子的前线轨道能够相互作用,因而使得杂环化合物分子可通过在镀层钢材表面形成吸附膜而阻止热镀锌钢材在盐酸介质中的溶解。质量损失和电化学测试结果表明:3种化合物在盐酸介质中对热镀锌钢材均具有良好的缓蚀作用,最高缓蚀效率可达99%以上;其中小檗碱的缓蚀效果最好,在浓度为1.0×10-4 mol/L时缓蚀效率就已达到80%以上;3种化合物均通过单分子层化学吸附方式吸附在镀层表面,从而起到保护作用,是热镀锌钢材酸洗过程的环境友好型缓蚀剂。 The inhibition effect of nicotinic acid, acridine and berberine on the hot dip galvanized steel in HCl solution was investigated by quantum chemistry calculation, mass loss test, electrochemical measurement, and scanning electron microscopy. Quantum chemistry calculation results show that these heterocyclic compounds have planar structure with a number of active centers, and their frontier orbitals can interact with those of Zn atom on the surface of coatings. Thus they might form an adsorption barrier film on the coating surface to decrease the corrosion rate of zinc. Mass loss test and electrochemical measurement results indicate that these compounds can perform good inhibition for the zinc coating in HCl solution, and the highest inhibition efficiency is up to 99%. Among them, berberine shows the best performance with inhibition efficiency up to 80% when at a relatively low concentration of 1.0×10^-4 mol/L. These compounds can be adsorbed on the coating surface by chemical adsorption with single molecular layer to protect it. Therefore, nicotinic acid, acridine, and berberine are effective and environmental friendly corrosion inhibitors for galvanized steel in HCl solutions.
作者 鞠虹 李焰
出处 《中国有色金属学报》 EI CAS CSCD 北大核心 2007年第12期2079-2088,共10页 The Chinese Journal of Nonferrous Metals
基金 国家自然科学基金资助项目(40576038) 山东省优秀中青年科学家科研奖励基金资助项目(2006BS07008)
关键词 热镀锌钢材 缓蚀剂 量子化学计算 电化学测试 galvanized steel inhibitor quantum chemistry calculation electrochemical measurement
  • 相关文献

参考文献20

  • 1Marder A R. The metallurgy of zinc-coated steel[J]. Progress in Materials Science, 2000, 45(3): 191-271.
  • 2King G A, O'Brien D J. The influence of marine environments on metals and fabricated coated metal products, freely exposed and partially sheltered[C]//Atmospheric Corrosion, ASTM STP 1239. Philadelphia: American Society for Testing and Material, 1995: 167-192.
  • 3李焰,魏绪钧,冯法伦.热浸锌铝合金镀层表面纳米晶腐蚀产物共沉积机理[J].中国有色金属学报,2001,11(2):248-252. 被引量:10
  • 4ZHANG S G, LEI W, XIA M Z, WANG F Y. QSAR study on N-containing corrosion inhibitors: Quantum chemical approach assisted by topological index[J]. Journal of Molecular Structure (THEOCHEM), 2005, 732(2): 173-182.
  • 5Lashgari M, Arshadi M R, Parsafar Gh A. A simple and fast method for comparison of corrosion inhibition powers between pairs of pyridine derivative molecules[J]. Corrosion, 2005, 61 (8): 778-783.
  • 6Luo H, Guan Y C, Hart K N. Corrosion inhibition of a mild steel by aniline and alkylamines in acidic solutions[J]. Corrosion, 1998, 54(9): 721-731.
  • 7Bereket G, Hur E, Ogretir C. Quantum chemical studies on some imidazole derivatives as corrosion inhibitors for iron in acidic medium[J]. Journal of Molecular Structure (THEOCHEM), 2002, 578(1): 79-88.
  • 8Lebrini M, Lagrenee M, Vezin H, Gengembre L, Bentiss F. Electrochemical and quantum chemical studies of new thiadiazole derivatives adsorption on mild steel in normal hydrochloric acid medium[J]. Corrosion Science, 2005, 47(2): 485-505.
  • 9LI Yah, ZHAO Peng, LIANG Qiang, HOU Bao-rong. Berbefine as a natural source inhibitor for mild steel in 1 M H2SO4[J]. Applied Surface Science, 2005, 252(5): 1245-1253.
  • 10宋晓岚,邱冠周,王海波,吴雪兰,曲选辉.2-氨基-5-巯基-1,3,4-噻二唑缓蚀剂结构的密度泛函计算[J].中国有色金属学报,2004,14(2):291-297. 被引量:7

二级参考文献21

  • 1[1]Zeidler D,Stavreva Z.Pl(o)tner M,et al.Characterization of Cu chemical mechanical polishing by electrochemical investigations[J].Microelectronic Engineering,1997,33(3):259-265.
  • 2[2]Timothy W E,Lee L,Rudy W.Copper:emerging material for wire bond assembly[J].Solid State Technology,2000,43(4):71-77.
  • 3[3]Tadahiro O.Advanced copper metallization technology for ULSI interconnects[J].Solid State Technology,1992,35(4):47-52.
  • 4[4]Wang M T,Tsai M S,Liu C,et al.Effects of corrosion environments on the surface finishing of copper chemical mechanical polishing[J].Thin Solid Films,1997,308-309:518-522.
  • 5[5]Roonald C,Janos F,Rahul J.Initial study on copper CMP slurry chemistries[J].Thin Solid Films,1995,266:238-244.
  • 6[6]Jan N M,Shyam G R,Murarka P.The addition of surfactant to slurry for polymer CMP:effects on polymer surface,removal rate and underlying Cu[J].ThinSolid Films,1997,290-291:447-452.
  • 7[7]Ganorkar M C,Pandit R V,Gayathri P.Studies in Conservation,1988,33(2):97-103.
  • 8[8]Belaj F.Crystal structure of 5-amino-3-H-1,3,4-thiadiazole-2-thione,C2H3N3S2[J].Z Kistallogr,1994,209(4):375-378.
  • 9[9]Gajendragad M R,Agarwala U.Complexing behavior of 5-amino-2-thiol-1,3,4-thiadiazole(part Ⅲ):Complexes of Cu(Ⅰ),Zn(Ⅱ),Ag(Ⅰ),Cd(Ⅱ),Tl(Ⅰ),Pb(Ⅱ),Pd(0)[J].Indian J Chem,1975,13(12):1331-1339.
  • 10[10]Downie T C,Harrison W.Crystal and molecular structure of 5-aminino-2-mercapto-1,3,4- thiadizole[J].Acta Crystallogr Sec B,1972,28(5):1584.

共引文献15

同被引文献114

引证文献10

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部