期刊文献+

下颌第一磨牙Ⅱ类洞与隧道洞的有限元应力比较 被引量:1

TDF analysis of stress between tunnel and Class Ⅱ cavity of mandibular first molar
下载PDF
导出
摘要 目的建立下颌第一磨牙的三维有限元模型,研究Ⅱ类洞型与隧道洞型的应力。方法利用牙CT机获得带三维坐标的断层数据及图像,利用Pro/Engineer软件转换数据,采用Ansa软件划分网格,运用Ansys 9.0软件建立下颌第一磨牙的三维有限元模型。在模型上分别制备Ⅱ类洞型与隧道洞型。分别模仿咬力垂直及斜向加压,利用Ansys软件分析比较牙体变形及所受应力情况。结果无论牙体变形量、所受应力大小、应力分布的均匀度,均支持后牙作隧道洞型比Ⅱ类洞型更能保持牙体的牢固度。结论后牙邻面洞制备成隧道洞型较之Ⅱ类洞型更能保持牙体的牢固度。 Objective To build a TDF model of the mandibular first molar , then study the stress on tunnel cavity and on Class Ⅱ cavity when the pressure is exerted. Methods The fracture data and pictures of three finite dements were got with the tooth CT machine. The data of the teeth were transformed with Pro/Engineer software. Then the mandibular first molar' s three finite elements model was built by Ansa and Ansys software. On the model, the cavities were prepared. Vertical pressure and inclined pressure were exerted on the models,imitating true teeth occlusive pressures. The deformation and stress of the teeth were analysed and compared with Ansys software. Results Including the deformation, the stress and the distribution of stress all supported that it would be more strengthened when the tooth was prepared into tunnel cavity than into Class Ⅱ cavity. Conclusion The tooth will be timer when it is prepared into tunnel cavity than into Class Ⅱ cavity.
出处 《口腔医学》 CAS 2007年第12期646-649,共4页 Stomatology
关键词 有限元 隧道洞型 应力 变形 three-dimensional-finite tunnel cavity stress deformation
  • 相关文献

参考文献9

二级参考文献33

  • 1侯敏,柳春明,张海钟.颅面复合体三维有限元法分析的研究进展[J].国外医学(口腔医学分册),2004,31(5):408-410. 被引量:5
  • 2刘路平,由敬舜,徐剑青,向喜林,邱森县,丁成辉.五种咬合情况下颞下颌关节负荷的三维有限元分析[J].中华口腔医学杂志,1994,29(6):368-371. 被引量:34
  • 3巢永烈,杨永丰,赵云凤.天然牙-末端种植牙固定桥的受载分析[J].华西口腔医学杂志,1995,13(1):6-10. 被引量:55
  • 4[1]Watanabe F, Hata Y, Komatsu S. Finite element analysis of the influence of implant inclination, loading position, and load direction on stress distribution[J]. Odontology, 2003;91(1):31-36.
  • 5[2]Imanishi A, Nakamura T, Ohyama T. 3-D Finite element analysis of all-ceramic posterior crowns[J]. J Oral Rehabil, 2003;30(8): 818-822.
  • 6[3]Cattaneo PM, Dalstra M, Melsen B. The transfer of occlusal forces through the maxillary molars: A finite element study[J]. Am J Orthod Dentofacial Orthop, 2003; 123(4):367-373.
  • 7[4]Wagner A, Krach W, Schicho K. A 3-dimensional finite-element analysis investigating the biomechanical behavior of the mandible and plate osteosynthesis in cases of fractures of the condylar process [J]. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2002;94(6):678-686.
  • 8[5]Chang KH, Magdum S, Khera SC. An advanced approach for computer modeling and prototyping of the human tooth[J]. Ann Biomed Eng, 2003;31(5):621-631.
  • 9[6]Toparli M. Stress analysis in a post-restored tooth utilizing the finite element method[J]. J Oral Rehabil, 2003;30(5):470-476.
  • 10Menicucci G, Mossolov A, Mozzati M. Tooth-implant connection:some biomechanical aspects based on finite element analyses [J].Clin Oral Impl Res,2002, 13 (3): 334-341.

共引文献32

同被引文献24

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部