摘要
考察p-Laplacian差分方程边值问题Δ[φp(Δu(t-1))]+a(t)f(u(t))=0,t∈[1,T+1],Δu(0)=u(T+2)=0的多解性,其中T为固定的正整数,φp(s)是p-Laplacian算子,φp(s)=|s|p-2s,p>1,(φp)-1=φq,1/p+1/q=1,且不要求lim l→0 f(l)/lp-1,lim l→∞f(l)/lp-1存在.
Abstract. The multiplicity of positive solutions for the following boundary-value problem of p-Laplacian difference equations was surveyed:△[φp(△u(t-1)]+a(t)f(u(u(t))=0,t∈[1,T+1]△u(0)=u(T+2)=0where T is a fixed positive integerφ(s)-P-Laplacianoperator,,φp(s)=|s|^p-2,p〉1,(φp)^1=φq,1/p+1/q=1,and the existence ofliml→0f(l)/l^p-1,liml→∞f(l)/lp-1is not required.
出处
《兰州理工大学学报》
CAS
北大核心
2007年第6期140-142,共3页
Journal of Lanzhou University of Technology
关键词
差分方程
边值问题
正解
存在性
difference equation
boundary-value problem
positive solution
existence