期刊文献+

基于主从模式的并行决策树算法研究 被引量:1

Research on parallel decision tree algorithm based on master/slave mode
下载PDF
导出
摘要 针对对等模式下并行决策树分类算法的通信开销太大,提出了一种基于主从模式的FPM_DT并行决策树挖掘算法,此算法综合使用了横向与纵向的数据划分模型,并采用根据分支数据分布情况进行结点分组的策略.实验结果表明,它与对等模式下并行SPRINT分类算法相比,降低了通信开销,具有更好的可扩展性与加速比性能. One of greatest problems with parallel decision tree classification algorithm based on peer-peer mode is that it has great communication costs .To solve this problem, a fast scalable parallel decision tree classification algorithm based on master/slave mode named FPM-DT is proposed in this paper, It is the first algorithm to introduce several kinds of techniques such as partitioning the training datasets horizontally and vertically, partitioning the training datasets in each branch into groups according to the status ofdatasets distributed. Experimental results show that this algorithm has lower communication and I/O costs, better scaleup and speedup than parallel SPRINT algorithm based on peer-peer mode.
出处 《西南民族大学学报(自然科学版)》 CAS 2007年第4期743-745,共3页 Journal of Southwest Minzu University(Natural Science Edition)
关键词 主从模式 决策树 并行 分类 master/slave mode decision tree parallel classification
  • 相关文献

参考文献3

  • 1SHAFER J,AGRAWAL R,MEHTA M.SPRINT:A Scalable Parallel Classifier for Data Mining[R].Research Report.IBM Almaden Research Center,San Jose.California,1996.544-546.
  • 2HOSHI M V,KARYPIS G,KUMAR V.ScalParC:A New Scalable and Efficient Parallel Classification Algorithm for Mining Large Datasets[C].Proc of the Int'l Parallel Processing Symp,1998.
  • 3彭曙蓉,王耀南.针对小文本的Web数据挖掘技术及其应用[J].微计算机信息,2006,22(07X):203-205. 被引量:10

二级参考文献6

  • 1彭曙蓉,章兢,杨文忠.MD5算法在消除重复网页算法中的应用[J].电脑知识与技术,2005(10):15-16. 被引量:5
  • 2Gudivada VN. Information retrieval on the World Wide Web[J].IEEE Internet Computing, 1997,1(5):58-68
  • 3Eghbalnia, Hamid; Assadi, Amir. An application of suppert vector machines and symmetry to computational modeling of perception through visual attention[J]. Neurocomputing,2001 (38-40):1193-1201
  • 4Trotman, Andrew. Choosing document structrue weights[J]. Information Processing and Management,2005,2:243-264
  • 5Rigutini, L.; Maggini, M.. A Combined Approach of Formal Concept Analysis and Text Mining for Concept Based Document Clustering[A]. Proceedings. The 2005 IEEE/WIC/ACM International Conference on Web Intelligence[C]. France: Compiegne University of Technology, 2005,19-22:330-333
  • 6汤效琴,戴汝源.数据挖掘中聚类分析的技术方法[J].微计算机信息,2003,19(1):3-4. 被引量:87

共引文献9

同被引文献12

  • 1严胜祥,吴绍春,吴耿锋,金沈杰.一种基于纵向划分数据集的并行决策树分类算法[J].计算机工程与科学,2004,26(7):67-70. 被引量:2
  • 2魏红宁.基于SPRINT方法的并行决策树分类研究[J].计算机应用,2005,25(1):39-41. 被引量:18
  • 3Quinlan J R. Introduction of decision trees [ J ]. Machine Le- arning,1986( 1 ) :81-106.
  • 4Kotsiantis S B. Decision trees:a recent overview [ J ]. Artificial Intelligence Review,2013,39(4) :261-283.
  • 5Sug H. A comprehensively sized decision tree generation me- thod for interactive data mining of very large databases [ C ]// Advanced data mining and applications. Berlin: Springer, 2005 : 141 - 148.
  • 6Gill A, Smith G D, Bagnall A J. Improving decision tree per- formance through induction-and cluster-based stratified sam- piing [ C ]//Proc of IDEAL 2004. Berlin : Springer, 2004 : 339- 344.
  • 7Fu L. Construction of decision trees using data cube[M]// Enterprise information systems VII. Netherlands: Springer, 2006:87 -94.
  • 8Folino G, Pizzuti C, Spezzano G. Parallel genetic programming for decision tree induction[ C]//Proceedings of the 13th inter- national conference on tools with artificial intelligence. Dallas: IEEE ,2001 : 129-135.
  • 9Srivastava A, Han E H, Kumar V, et al. Parallel formulations of decision-tree classification algorithms[ M]. US: Springer, 2002.
  • 10Ben-Haim Y,Tom-Tov E. A streaming parallel decision tree algorithm[ J ]. Journal of Machine Learning Research, 2010, 11:849-872.

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部