期刊文献+

Krull型整环与几类特殊整环

Krull type domains and other special domains
下载PDF
导出
摘要 设R是有单位元的整环.本文用通常的星型算子来刻画Krull型整环与其它几类特殊整环之间的关系.本文证明了若dim(R)≥2,则R的每个素w-理想的高度为1当且仅当任给R的素理想P,若htP≥2,那么P是强w-可逆理想.另外,若R是Krull型整环,dim(R)≥2,w-dim(R)=1,且为H整环,那么,对任给R的素w-理想M,则M是w-可逆理想,当且仅当M不是强w-理想,当且仅当RM是离散赋值环,当且仅当RM是赋值环.同时,我们给出了有限特征的GCD整环与Krull型整环的一些等价条件.最后,我们论证了若R是Prufer整环,又是Krull型整环,任给非零非单位a∈R,则有R是阿基米德整环当且仅当a含在R的某个极小素理想中. In this paper, we characterize Krull type domains by using general star operations. We characterize the relationships between Krull type domains and other special domains. Let R be a domain with dim(R)〉 2, we indicate that each prime ideal P with htP _〉 2 of R is a strongly W-invertible ideal, if and only if each prime W-ideal of R has the height of 1. Besides, we show that R is a Krull type domain and an H domain with dim(R)≥ 2 and W - dim(R)=1, then each prime W -ideal M of R is W-invertible, if and only ifM is not strong W-ideal, if and only if RM is a valuation domain, if and only if RM is a DVR. Moreover, we obtain the equivalent conditions between Krull type domains and GCD domains. Finally, we prove that a Krull type domain R is a Prufer domain, then R is an Archimedean domain if and only if α is contained in some minimal prime ideal of R for every nonzero nonunit a.
出处 《西南民族大学学报(自然科学版)》 CAS 2007年第4期746-749,共4页 Journal of Southwest Minzu University(Natural Science Edition)
关键词 Krull整环 Krull型整环 GCD整环 阿基米德整环 Krull domain Krull type domain GCD domain Archimedean domain
  • 相关文献

参考文献5

  • 1GLIMER.R,Multiplicaion Ideal Theory[M].Dekker New York,1972.
  • 2杨杰,王芳贵.关于KRULL型整环的性质的描述[J].四川师范大学学报(自然科学版),2005,28(3):287-290. 被引量:2
  • 3ZAFRULLAH.M.Flatness and inertibility of ideal[J].Comm Algebra,1990,18:2151-2158.
  • 4OHM J.Some counterexamples related to integral closure in D[[X]][J].Trans Amer Math Soc,1966,122:321-333.
  • 5BARUCCI V,DOBBS D E.On chain conditions in integral domains[J].Canad Math Bull,1984,27(3):351-359.

二级参考文献11

  • 1Gilmer R. Multiplicaion Ideal Theory[M]. New York:Marcel Dekker Inc, 1972.
  • 2Mott J, Zafrullah M. On Prufer v-multiplication domains[J]. Manus Math, 1981,35:1 ~ 26.
  • 3Kang B G. Prufer v-multiplication domains and the ring R[X]Nv[J]. J Algebra, 1989,123:151 ~ 170.
  • 4Glaz S, Vosconcelos W V. Flat ideals Ⅱ[J]. Manus Math, 1977,22:325~341.
  • 5Houston E, Zafrullah M. Integral domains in which each t-ideal is divisorial[J]. J Michigan Math, 1988,35:291 ~ 300.
  • 6Anderson D D. On t-invertibility Ⅲ[J]. Comm Algebra, 1993,21(4) :1189~1201.
  • 7Hwang C J, Chang G W. Prufer v- muliplicaion domains in which each t-ideal is divisorial[J]. Bull Korean Math Soc,1998,35(2):259~268.
  • 8Ohm J. Some counterexamples related to integral closure in D[[ X]][J]. Trans Amer Math Soc,1966,122:321 ~ 333.
  • 9Anderson D, Houston E, Zafrullah M. Pseudo-inegrality[J]. Canad Math Bull,1991,34(1):15 ~ 22.
  • 10Dobbs D E, Houston E G, Lucas T G, et al. t-linked overrings and Prufer v- multiplicaion domains[J]. Conma Algebra, 1989,17(11) :2835 - 2852.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部