期刊文献+

一类捕食-食饵模型正平衡解的存在性 被引量:2

Co-existence of positive steady-state solutions for a predator-prey model
下载PDF
导出
摘要 本文利用锥映象不动点指数计算方法,结合极值原理、上下解方法及算子的谱分析,得出了一类Leslie-Gower和Holling-TypeII型捕食-食饵方程存在正平衡解的充分条件和必要条件,从结果中发现这两个条件之间有一段空隙.在此情形下,利用局部分歧理论讨论了正平衡解的存在性. Coexistence positive solutions to the steady states of a predator-prey system with Leslie-Gower and Holling-Type Ⅱschemes is investigated in this paper. By means of calculating the indices of fixed points of compact maps in cones, in combination with the maximum principles, lower-upper solutions methods and spectrum analysis of operators, we obtain the necessary and sufficient conditions for existence of positive steady state solutions, but there is a gap between these two conditions, so we study the oositive solutions by using local bifurcation theorem in the case.
出处 《西南民族大学学报(自然科学版)》 CAS 2007年第4期760-766,共7页 Journal of Southwest Minzu University(Natural Science Edition)
基金 国家自然科学基金(10571115).
关键词 平衡态 不动点指数 局部分歧理论 steady-state index of fixed point local bifurcation theory
  • 相关文献

参考文献8

  • 1AZIZ-ALAOUI M A,DAHER OKIYE M.Boundedness and global stability for a predator-prey model with modified Leslie-Gower and Holling-Type schemes[J].lett.Appl.Math,2003,16:1069-1075.
  • 2PENG R,WANG M X.On multiplicity and stability of positive solutions of diffusive prey-predator model[J].Math.Anal.Appl.2006,316:256-268.
  • 3WONLYUL KO,KIMUN RYU.Coexistence state of a predator-prey system with non-monotonic functional response[J].Nonliner.Analysis.2006,(3):1-18.
  • 4谢强军,吴建华,黑力军.一类反应扩散方程非负平衡解的存在性[J].数学学报(中文版),2004,47(3):467-478. 被引量:10
  • 5LI L,LOGAN R.Positive solutions to general elliptic competition models[J].Differential and Interal Equations 1991,4(4):817-834.
  • 6DANCER E N.On positive solutions of some pairs of differential equations[J].Trans.Amer,Math.Soc.,1984,284:729-743.
  • 7AMANN H.Fixed point equations and nolinear eigenvalue problems in ordered banach spaces[J].SIAM Review,1976,18:620-709.
  • 8SMOLLER J.Shock Waves and Reaction-Diffusion Equations[M].New York:Spring-Verlag,1983.

二级参考文献19

  • 1Pao C. V., Nolinear parabolic and elliptic equations, New York: Plenum Press, 1992.
  • 2Blat J., Brown K. J., Bifurcation of steady-state solutions in predator-prey and competition systems, Proc.Roy. Soc. Edinburgh, 1984, 97A: 21-34.
  • 3Dancer E. N., Lopez-Gomez J., Ortega R., On the spectrum of some linear noncooperative elliptic systems with radial symmetry, Differential and Integral Equations, 1995, 8(3): 515-523.
  • 4Li L., Coexistence theorems of steady state for predator-prey interact systems, Trans. Amer. Math. Soc.,1988, 305: 143-166.
  • 5Wang M. X., Nonlinear parabolic equations, Beijing: Scientific Press, 1993 (in Chinese).
  • 6Brown K. J., Hess P., Positive periodic solutions of predator-prey reaction-diffusion systems, Nonlinear Anal.,1991, 16(12): 1147-1158.
  • 7Brown K. J., Nontrivial solutions of predator-prey systems with small diffusion, Nonlinear Anal., 1987, 11:685-689.
  • 8Conway E. D., Gardner R., Smoller J., Stability and bifurcation of steady state solutions for predator-prey equations, Adv. Appl. Math., 1982, 3: 288-334.
  • 9Blat J., Brown K.J., Global bifurcation of positive solutions in some systems of elliptic equations, SIAM J.Math. Anal., 1986, 17: 1339-1353.
  • 10Du Y., Lou Y., Some uniqueness and exact multiplicity results for a predator-preymodel, Trans. Amer.Math. Soc., 1997, 349(6): 2443-2475.

共引文献9

同被引文献14

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部