摘要
通过对广义Baouendi-Grushin算子L=△x+|x|2α△y(α>0,x∈Rn,y∈Rm)的向量场分别加权,提出一类失去反自共轭性双权退化向量场.通过讨论泛函的严格凸性,在有界单连通区域内,给出p次退化椭圆算子的第一特征值的单一性.
In this paper, by adding respective double-weight to the vector field for generalized Baouendi-Grushin operator L = △x +|x|^2α△y(α〉0,x∈R^n,y∈ R^m), we propose a kind of loses counter-from the conjugational double-weight degeneration vector field. After functional is strict through the discussion of convexity, we produce the first characteristic value simplicity for p time of degenerated ellipse operator in a bounded simply connected domain.
出处
《西南民族大学学报(自然科学版)》
CAS
2007年第5期997-1000,共4页
Journal of Southwest Minzu University(Natural Science Edition)
基金
浙江省自然科学基金资助
项目编号为Y606144.
关键词
双权退化向量场
第一特征值的单一性
degenerated vector field
first characteristic value simplicity