期刊文献+

塔河油田四区鹰山组碳酸盐岩储层测井识别 被引量:7

LOGGING IDENTIFICATION OF CARBONATE RESERVOIR OF YINGSHAN FORMATION IN BLOCK 4 OF TAHE OILFIELD
下载PDF
导出
摘要 塔河油田四区奥陶系油藏主要产层为鹰山组碳酸盐岩储层,该套储层曾长时期受成岩作用、构造运动和岩溶作用的强烈改造而形成不同类型的储集空间,给测井解释带来极大困难.针对该区储层孔隙结构类型多样、储层非均质性严重等情况,将研究区储层分为4种类型:①未充填洞穴型;②部分(全)充填洞穴型;③裂缝-孔洞型;④裂缝型.结合试采资料定性分析了每种储层的测井响应特征.在此基础上,以典型性为原则挑选出自然伽玛、深侧向、浅侧向、声波、密度、中子等6种测井信息作为参数,针对常规BP神经网络的缺点,采用改进BP神经网络方法对储层进行了自动分类识别,取得了较好的效果. Yingshan Group carbonate reservoir is the dominant Ordovician reservoirs in block 4 of Tahe Oilfield. The Reservoir has undergone strong diagenesis,tectonics and karstification for a long geological periods. Now the different types of reservoir space bring enormously difficulty to the well logging explanation. This paper tackles many difficulties because of the various strong heterogeneous fracture-cave system in this zone. The studied pay zone can be divided into four categories,which are ①unpacked cavern,②partial(full) packed cavern,③fracture-cavern,④fracture, and relevant typical log response are analyzed along with well test. According to principle of typicality, six types of log response information, which consist of GR ray, deep lateral resistivity, shallow lateral resistivity, acoustic velocity, density and neutron porosity. To overcome the shortcomings of conventional BP neural network model, improved BP model is brought forward to realize the classification of the reservoir, and good results have been achieved.
出处 《新疆地质》 CAS CSCD 2007年第4期405-408,共4页 Xinjiang Geology
关键词 塔河油田 碳酸盐岩储层 神经网络 测井识别 Tahe Oilfield Carbonate reservoir neural network Logging identification
  • 相关文献

参考文献6

二级参考文献19

  • 1肖慈Xun.以石油测井资料解释为例谈神经网络的预测能力.神经网络理论与应用[M].西南交大出版社,1996..
  • 2刘海阔 张义勋.地质辞典(矿床地质,应用地质分册)[S].北京:地质出版社,1986.194-200.
  • 3尚慧芸 李晋超 郭舜玲 等.石油地质实验新技术[M].北京:石油工业出版社,1982.231.
  • 4[1]Simon Haykin.Neural Networks:A Comprehensive Foundation,Second Edition[M].北京:清华大学出版社,2001.
  • 5[2]Martin T H,Howard B D,Beale M H.Neural Network Design[M].戴葵,译.北京:机械工业出版社,2002.
  • 6[3]丛爽.面向MATLAB工具箱的神经网络理论与应用:第二版[M].合肥:中国科学技术大学,2003.
  • 7[6]史忠科.神经网络控制理论[M].西安:西北工业大学出版社,2000.
  • 8王允诚.气藏精细描述[M].四川成都:四川科技出版社,2003..
  • 9Baldwin J L. Application of a neural network to the problem of mineral identification from well logs. Halliburtion Logging Serv, 1989.
  • 10王永骥,神经元网络控制,1998年

共引文献40

同被引文献97

引证文献7

二级引证文献98

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部