期刊文献+

基于贝叶斯网络的自适应学生模型的研究 被引量:3

The research of adaptive student model on Bayesian networks
下载PDF
导出
摘要 首先介绍了贝叶斯网络的基础理论,贝叶斯网络是目前不确定知识表达和推理领域最有效的理论模型之一,适用于不确定性和概率性的知识表达和推理。接着介绍了自适应学生模型的概念和理论,然后运用贝叶斯网络构建了一个自适应性学生模型,并对贝叶斯网络学生模型的知识表达方法进行了研究,最后举例说明这个理论的可行性。基于贝叶斯网络构建的适应性学生模型能够有效地提供适应性的网络教学资源,从而有助于实现网络教学平台的适应性学习。 This study first introduced the Bayesian networks, basic theory of Bayesian network is now one of the most effective theory models in uncertainty knowledge expression and the inference field, and applies to uncer- tainty, probability knowledge. Using the Bagesian networks the adaptive student model concept and the theory, was introduad and then an adaptive student module was construhed by using the Bayesian network. The knowl- edge representation methods for student model of Bayesian networks was studied. Finally, an example was intru- luced to illustrate the feasibility of this theory. Based on the Bayesian networks, adaptive students model can ef- fectively provide adaptive network teaching resouwes which can contribute to the realization of adaptive learning in the network teading platform.
出处 《山东轻工业学院学报(自然科学版)》 CAS 2007年第4期6-10,共5页 Journal of Shandong Polytechnic University
基金 山东省自然科学基金资助项目(2004ZX14)
关键词 学生模型 贝叶斯网 自适应性 student module Bayesian nets adaptive
  • 相关文献

参考文献3

二级参考文献18

  • 1陆谊.信息推送技术在网络教学中的应用[J].计算机应用与软件,2005,22(5):65-67. 被引量:7
  • 2李一波,张森悦.试题库试题难度系数自适应学习整定[J].计算机工程,2005,31(12):181-182. 被引量:13
  • 3徐宾刚.[D].西安:西安交通大学机械工程学院,2001.
  • 4[1]Pearl J. Probabilistic reasoning in intelligent systems: networks of plausible inference[M]. California: Morgan Kaufmann Publishers Inc, 1988.116-131.
  • 5[2]David H. Bayesian networks for data mining [J]. Data Mining and Knowledge Discovery, 1997(1): 79-119.
  • 6[3]Zweig G. Bayesian network structures and inference techniques for automatic speech recognition[J]. Computer Speech and Language, 2003,17(2-3): 173-193.
  • 7[4]Kahn C E Jr, Roberts L M, Shaffer K A, et al. Construction of a Bayesian network for mammographic diagnosis of breast cancer [J]. Computation of Biology Medicine, 1997, 27(1): 19-29.
  • 8[6]Agre G. Diagnostic Bayesian networks[J]. Computers and Artificial Intelligence, 1997, 16(1): 47-67.
  • 9David Heckerman Bayesian networks for data mining[J]. Data Mining and Knowledge Discovery, 1997, 1(1): 79-119.
  • 10Kahn C E Jr, Robert L M, Shaffer K A, et al. Construction of a Bayesian network for mammographic diagnosis of breast eancer[J]. Computers of Biology and Medicine, 1997, 27(1): 19-29.

共引文献24

同被引文献51

引证文献3

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部