期刊文献+

展向具有谐波型扰动的方柱旋涡分离流数值研究 被引量:1

Numerical studies on the ovrtex dynamics in the wake of a square-section cylinder with the spanwise geometric disturbance
下载PDF
导出
摘要 基于Fourier谱方法和有限差分的混合方法,对方型截面柱体的分离流及非定常涡动力学进行数值研究,特别是展向具有谐波型几何扰动对流动演化及受力变化的影响。结果表明,当Re=100-150,在未引入扰动的柱体上/下表面处(而非前缘)流动发生局部分离,并形成分离泡。流动分离点随Re数增加是逐渐从后缘前移到前缘附近。沿展向引入扰动后,当Re=100时,在柱体表面产生流向与垂向涡量,甚至抑制了展向涡的发展。当波陡度(波高/波长)为0.167时,产生了类似于发夹涡的结构,此时柱体平均阻力系数和升力系数幅值分别减小了9%和98%。并讨论了相关的机制。 Based on the hybrid method of Fourier spectral and the finite-difference methods, the separated flow and the usteady vortex dynamics about a square-section cylinder is investigated numerically, specially attention is paid on the effect of spanwise disturbance in cylinder geometry on the flow evolution and the forces variation. Results show that, at the case of Re = 100 to 150, the flow around the cylinder without the disturbance is separated locally on the up/down sides, not the leading edge, to form Separated bubble. The separation point is moved from the trailing edge to the position near the leading edge with the leading edge with the increasing of Reynolds number. After the disturbance is introduced, at the Reynolds number of 100, streamwise and vertical vorticities are produced on the cylinder surfaces, leading to the suppression of spanwise vortex shedding. When the wavyness is up to 0. 167, the hairpin-like vortex structure is emerged, and then the timeaveraged drag coefficient and the amplitude of lift coefficient are reduced 9 % and 98 %, respectively. The mechanism related is discussed.
出处 《空气动力学学报》 CSCD 北大核心 2007年第B12期80-84,共5页 Acta Aerodynamica Sinica
基金 国家863计划(2006AA09Z350).
关键词 波型方截面柱体 分离流 数值拟模 非定常涡动力学 wavy square-section cylinder separated flow numerical simulation unsteady vortex dynamics
  • 相关文献

参考文献9

  • 1OKAJIMA A. Strouhal numbers of rectangular cylinders [J]. J. Fluid Mech . , 1982,121:379-398.
  • 2SOHANKAR A, NORBERG C, DAVIDSON L. Nmnerical simulation of unsteady low-Reynolds number flow around rectangular cylinders at incidence [ J ]. J. Wind Engng. lndust. Aerodyn. , 1997,69-71 : 189-201 .
  • 3SOHANKAR A, NORBERG C, DAVIDSON L. Low-Reynoldsnumber flow around a square cylinder at incidence: study of blockage, onset of vortex shedding and outlet boundary condition [J]. Int. J. Num. Meth. Fluids, 1998,26:39-56.
  • 4SOHANKAR A, NORBERG C, DAVIDSON L. Simulation of three-dimensional flow around a square cylinder at moderate Reynolds numbers [J]. Phys. Fluids, 1999,11(2):288- 306.
  • 5ROBICHAUX J, BALACHANDAR S, VANKA S P. Three-dimensional Floquet instability of the wake of square cylinder [J]. Phys. Fluids, 1999,11 (3) : 560-578.
  • 6DAREKAR R M. SHERWIN S J. Flow past a square-section cylinder with a wavy stagnation face [J]. J. Fluid Mech., 2001,428 : 263-295.
  • 7NEWMAN D J. A computational study of fluid/structure interactions: flow-induced vibrations of a flexible cable [ D]. PhD thesis, Princeton University, 1996:9-13.
  • 8GHIA U, DAVIS R T. Navier-Stokes solutions for flow past a class of two-dimensional semi-infinite bodies [ J]. MAil J. 1974, 12(12) : 1659-1665.
  • 9JEONG J, HUSSAIN F. On the identification of a vortex [ J]. J. Fluid Mech. , 1995,285:69-94.

同被引文献15

  • 1SARPKAYA T. Vortex-induced oscillations[J]. ASME.J.Appl. 1979, (46): 241-258.
  • 2WILLIAMSON C H K, GOVARDHAN R. Vortexinduced vibrations[J]. Annu.Rev. Fluid Mech.2004, (36): 413-455.
  • 3贾小荷 刘桦.双圆柱扰流的大涡模拟.水动力研究与进展:A辑,2008,23(6):621-631.
  • 4HARTLEN, RONALD T. Currie.Lift-oscillator model of vortex-induced vibration[J]. Journal of the Engineering Mechanics Division, ASCE, 1970, (96): 577-591.
  • 5IWAN W D. The vortex induced oscillation of elastic structure elements[J]. Journal of Engineering for Industry, 1975, (97): 1378-1382.
  • 6KRENK S,NIELSEN S R K. Energy balanced double oscillator model for vortex-induced vibrations[J]. Journal of Engineering Mechanics, 1999, (125): 263 -271.
  • 7FACCHINETTI M L, LANGRE E DE, BIOLLEY E Coupling of structure and wake oscillators in vortex-induced vibrations[J]. Journal of Fluids and Structures, 2004, (18):123-140.
  • 8VIOLETTE R, LANGRE E DE, SZYDLOWSKI J.Computation of vortex-induced vibrations of long structures using a wake oscillator model:comparison with DNS and experiments[J]. Computers and Structures, 2007, 85: 1134-1141.
  • 9GOVARDHAN R, WlLLIAMSON C H K. Modes of vortex formation and frequency response of a freely vibrating cylinder[J]. Journal of Fluid Mechanics, 2000, (420): 85-130.
  • 10KHALAK A, WILLIAMSON CH K. Motions forces and mode transitions in vortex-induced vibrations at low mass-damping[J]. Journal of Fluids and Structures, 1999, (13): 813-851.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部