期刊文献+

神经网络在悬索桥故障诊断中的应用

Application of Artificial Neural Network in Cable Suspension Bridge Breakdown Diagnosis
下载PDF
导出
摘要 利用改进的反向传播神经网络BP(back propagation)控制方法,结合压电陶瓷(PZT)受力变形时电压电场变化的机理,通过对悬索桥梁的应力应变进行在线检测,对桥梁结构健康状态进行智能诊断。通过实验研究获得了大量的实验数据,证明了该方法的可行性、先进性,为实际应用奠定了理论与实验基础。 By using improved back propagation artificial neural network control method, combined with the mechanism of voltage electrical field change when force was applied on piezoceramics(PZT) resulting in deformation, via on-line test for press and strain of cable suspen- sion bridges, carries out intelligent diagnosis for bridges' structural health state. And through experimental studies, a lot of experimental data had been obtained, in the meantime the method was approved with feasibility, advancement, having laid a foundation of theory and experiment for practical application.
出处 《江苏电器》 2007年第6期22-24,58,共4页
基金 苏州市科技发展基金(SG0322)
关键词 反向传播神经网络 压电陶瓷(PZT) 悬索桥梁 智能检测 back propagation artificial neural network piezoceramics(PZT) able suspension bridge intelligent test
  • 相关文献

参考文献2

二级参考文献4

共引文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部