期刊文献+

降雨时间序列降噪及预测系统建模研究

Noise reduction and prediction system of rainfall chaotic time series
下载PDF
导出
摘要 以解决降雨混沌时序预测精度较低的问题为目的,基于相空间重构思想,应用混沌降雨时序奇异值分解技术对混沌时序的噪声进行了剥离。采用定性和定量的混沌特性判定方法,计算指出降雨时序具有明显的混沌特性。在此基础上构建了基于最小二乘支持向量机的降噪、预测一体化模型并进行了多步预测实验。结果表明降噪前后预测精度相差很大,证实了噪声是造成混沌预测方法预测精度较低的主要原因。通过与其他预测方法比较,验证了所建立的混沌预测模型能够捕捉到原混沌系统的动力学特征,预测误差较小,泛化能力较强,其预测效果较好。 Not only the noise reduction methods of rainfall chaotic time series with noise and its reconstruction techniques were studied, but also prediction techniques of rainfall chaotic time series were discussed based on chaotic data noise reduction. First , the measurement of rainfall time series were respectively applied for noise reduction using singular value decomposition; Then , nonlinear dynamics character of this time series is analyzed, the results of calculating show that there' s chaotic time series. Based on this, a LLSVM model was built by phase space reconstruction. The influent of rainfall has been disposed can be predicted by this model. The results indicate that reasonable forecasting results have been achieved through such method.
出处 《河北工程大学学报(自然科学版)》 CAS 2007年第4期85-88,共4页 Journal of Hebei University of Engineering:Natural Science Edition
基金 地理空间信息工程国家测绘局重点实验室资助(200709)
关键词 相空间重构 降噪 混沌时间序列 支持向量机 预测 reconstruction technique noise reduction chaotic time series least squares support vector machines prediction
  • 相关文献

参考文献7

二级参考文献79

共引文献119

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部