期刊文献+

一类基于比率依赖的捕食—食饵模型的定性分析

Qualitative analysis of a ratio-dependent predator-prey system
下载PDF
导出
摘要 研究了一类两物种间的捕食—食饵模型,其功能反映函数为比率依赖型.首先运用抛物型方程的比较原理得到系统的一个全局吸引子,然后通过椭圆型方程的极值原理和特征值方法对平衡态解的性质加以分析.最后证明了共存解的存在性和稳定性. In this paper, the dynamics of predator-prey interaction systems between two species with ratio-dependent functional responses was discussed. First a global attractor was derived by the comparison principle of parabolic equations,and the qualitative properties of steady states were investigated mainly through the maximum principle of elliptic equations and the method of the eigenvalue. In addition,the existence and stability were proved.
作者 张丽娜
出处 《南阳师范学院学报》 CAS 2007年第12期3-6,共4页 Journal of Nanyang Normal University
基金 国家自然科学基金资助项目(10571115)
关键词 比率依赖 全局吸引子 极值原理 分歧 ratio-dependent global attractor maximum principle bifurcation
  • 相关文献

参考文献10

  • 1Akcakaya H R,Arditi R and Ginzburg L R. Ratio-dependent prediction : an abstraction that works [ J ]. Ecol-ogy, 1995,76:995-1004.
  • 2Arditi R and Berryman A A. The biological control paradox[ J]. TrendsEcol Evol, 1991,6:32.
  • 3Arditi R and Ginzburg L R. Coupling in predator-prey dynamics: ratio-dependence [ J ]. J Theor Biol, 1989, 139:311-326.
  • 4Arditi R and Saiah H. Empirical evidence of the role of heterogeneity in ratio-dependent consumption[ J ]. Ecology, 1992,73 :1544-1551.
  • 5Hsu S B , Huang T W and Kuang Y. Global analysis of the Michaelis-Menten-type ratio-dependent predator-prey system [ J ]. J Math Biol,2001,42 :489-506.
  • 6Hsu S B,Huang T W and Kuang Y. Rich dynamics of a ratio-dependent one-prey twopredator mode [ J ]. J. Math. Biol,2001,43 :377-396.
  • 7Huang Y X and Diekmann O. Predator migration in response to prey density:what are the consequences [ J ]. J. Math. Biol,2001,43:561-581.
  • 8Pang Y H Peter,Wang Mingxin. Qualitative analysis of a ratio-dependent predator-prey system with diffusion [ J]. Proceedings of the Royal Society of Edinburgh, 2003, 133 (A) :919-942.
  • 9Joel Smoller. Shock Waves and Reaction-Diffusion Equations [M]: New York:Spring-verlag Berlin Heidelberg,1999.
  • 10Wu Jianhua. Global bifurcation of coexistence states for the competition model in the chemostat [ J ]. Nonlinear Analysis, 2000,39( 6 ) :817-835.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部