摘要
利用分块矩阵的性质来研究一般线性方程组解的结构,给出了一般线性方程组AX=b的解存在的充分必要条件为-A21A1-11b1┇br+br+1┇bm=0.其中,R(A)=R(A11)=r,A11为A的r×r阶子块,A21为A的(n-r)×r阶子块.同时在方程组有解时给出了此线性方程组的通解.
The stucture of solutions of the system of linear equations by the properties of block matrices was discussed. The sufficient and necessary condition that the solutons of the system of linear equations AX = b.-A21A11^-1{b1…br}+{br+1…bm}=0 where R(A) = R(A11 ) = r,A11 is a r × r subblock of matrix A ,A21 is a (n - r) × r subblock of matrix A. And the general solution of the system of linear equations was present if there exist some solutions in the system.
出处
《南阳师范学院学报》
CAS
2007年第12期15-17,共3页
Journal of Nanyang Normal University
关键词
矩阵
线性方程组
解的结构
matrix
system of linear equations
structure of solutions