期刊文献+

快速神经网络无损压缩方法研究 被引量:3

Lossless Data Compression with Neural Network Based on Maximum Entropy Theory
下载PDF
导出
摘要 传统的人工神经网络数据编码算法需要离线训练且编码速度慢,因此通常多用于专用有损编码领域如声音、图像编码等,在无损数据编码领域应用较少。针对这种现状,该文详细地研究了最大熵统计模型和神经网络算法各自的特点,提出了一种基于最大熵原理的神经网络概率预测模型并结合自适应算术编码来进行数据压缩,具有精简的网络结构的自适应在线学习算法。试验表明,该算法在压缩率上可以优于目前流行的压缩算法Limpel-Zip(zip,gzip),并且在运行时间和所需空间性能上同PPM和Burrows Wheeler算法相比也是颇具竞争力的。该算法实现为多输入和单输出的两层神经网络,用已编码比特的学习结果作为待编码比特的工作参数,符合数据上下文相关约束的特点,提高了预测精度,并节约了编码时间。 Neural networks are used more frequently in lossy data coding domains such as audio, image, etc than in general lossless data coding, because standard neural networks must be trained off-line and they are too slow to be practical. In this paper, an adaptive arithmetic coding algorithm based on maximum entropy and neural networks are proposed for data compression. This adaptive algorithm with simply structure can do on-line learning and does not need to be trained off-line. The experiments show that this algorithm surpasses those traditional coding method, such as Limper-Ziv compressors (zip, gzip), in compressing rate and is competitive in speed and time with those traditional coding method such as PPM and Burrows-Wheeler algorithms. The compressor is a bit-level predictive arithmetic which using a 2 layer network with muti-input and one output. The arithmetic, according with the context constriction, improves the precision of prediction and reduces the coding time.
出处 《电子科技大学学报》 EI CAS CSCD 北大核心 2007年第6期1245-1248,共4页 Journal of University of Electronic Science and Technology of China
基金 国家自然科学基金项目(10476006) 国家863项目(2006AAD1Z414)
关键词 算术编码:数据压缩 最大熵 神经网络 arithmetic encoding data compression maximum entropy neural network
  • 相关文献

参考文献10

  • 1STEARNS S. Arithmetic coding in lossless waveform compression[J]. IEEE Trans Signal Processing, 1995: 43(1), 1874-1879.
  • 2DONY R D, HAYKIN S. Neural network approaches to image compression[J]. Proc IEEE, 1995, 83(1): 288-303.
  • 3LOGESWARAN R, ESWARAN C. Neural network based lossless coding schemes for telemetry data[J]. Proc IEEE Int Geosciences Remote Sensing Symp, 1999, 4(1): 2057- 2059.
  • 4LOGESWARAN R, ESWARAN C. Performance survey of several lossless compression algorithms for telemetry application[J]. Computer Application, 2001, 22(1): 1-9.
  • 5LOGESWARAN R, ESWARAN C. Radial basis neural network for lossless data compression[J]. Computer Application, 2002, 24(1): 14-19.
  • 6SMADJA F. Retrieving collocation from text[J]. Extract Computational Linguistics, 1993, 19(1): 143-175.
  • 7WOJCIECH S, THORSTEN B. A maximum entropy partial parser for unrestricted text[C]//In 6th Workshop on Very Large Corpora, Montreal, Canada: [s.n.], 1998: 143-151.
  • 8RATNAPARKHI A. Maximum entropy models for natural language ambiguity resolution, PloD. dissertation [D]. America: University of Pennsylvania, 1998.
  • 9DARROCH J N, RATCLIFF D. Generalized iterative scaling for log-linear models[J]. Annals of Mathematical Statistics, 1972, 43(5): 1470-1480.
  • 10EGAN W J, ANGEL S M, MORGAN S L. Rapid optimization and minimal complexity in computational neural network multivariate calibration of chlorinated hydrocarbons using raman spectroscopy[J]. Chemomet, 2001,15(1): 29-48.

同被引文献29

  • 1王毅,李智深,刘鹏.Globus:网格世界的Linux[J].中国计算机用户,2005(8):19-19. 被引量:4
  • 2王继成,蔡义发,吕维雪.一种自动生成神经网络结构的新方法[J].自动化学报,1996,22(1):19-25. 被引量:13
  • 3魏歌.基于并行关系与因果关系的关联规则[J].航空计算技术,2006,36(2):50-52. 被引量:2
  • 4Anahit Hovharmisyan. Comparison of Lossless Compression Models[D]. Texas Tech University, 1999,8.
  • 5D. A. Huffmaru A method for the construction of minimum redundancy codes.[J]. Proceedings of the IRE, 1952,40(9) : 1098-1101.
  • 6S. W. Golomb. Run-length encodings[J]. IEEE Transactions on Information Theory, 1966,12(3) :399-401.
  • 7A. Lempel, J. Ziv. A universal algorithm for data compression[J]. IEEE Transactions on Information Theory, 1977,23(3) : 337-343.
  • 8A. Lempel, J. Ziv. Compression of individual sequences via variable-rate coding[J]. IEEE Transactions on Information Theory, 1978,24(5) : 530-536.
  • 9Vitter J S. Design and Analysis of Dynamic Huffman Codes [J]. Journal of the Association Computing Machinery, 1987,34(4) : 825-845.
  • 10祝本明,刘桂华.一种改进的游程编码算法[J].西南科技大学学报,2007,22(3):75-78. 被引量:9

引证文献3

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部