期刊文献+

PCA和相融性度量在聚类算法中的应用 被引量:4

Application of PCA and Coherence Measure in Clustering Algorithm
下载PDF
导出
摘要 提出一种基于主分量分析和相融性度量的快速聚类方法。通过构造主分量空间将高维数据投影到两个主成分上进行特征提取,每一个主分量都是原始变量的线性组合,主分量之间互为正交关系,在剔除冗余信息的同时,实现高维数据降维,得到二维坐标,以此作为聚类分析的输入;提出相融性度量的定义,用相融性度量描述一个样本与训练集相融合的程度,设计一种基于相融性度量的分类器。以该方法为基础设计的光谱自动分类系统可实现快速、准确地分类。 An efficient and quick method based on 2-D Principal Component Analysis (PCA) and coherence measure is introduced. The coordinates are achieved by projecting the high dimensional data to the 2-D space after the principle component space is built and feature extraction is finished at one time. Every principle component is the linear combination of the original variables and is irrelevant to each other. A novel coherence measure is introduced and designed for effectively measuring the coherence of a new specimen of unknown type with the training samples. The spectrum can be classified quickly and exactly by the classifier.
出处 《电子科技大学学报》 EI CAS CSCD 北大核心 2007年第6期1292-1295,共4页 Journal of University of Electronic Science and Technology of China
基金 国家重大工程LAMOST项目
关键词 相融性度量 降维 高维数据 主分量分析 coherence measure dimensionality reduction high-dimensional data principal component analysis
  • 相关文献

参考文献8

  • 1赵永恒.LAMOST项目计划书[R].北京:国家天文台,2005.
  • 2赵永恒.fits文件解析[EB/OL].www.lamost.org,2007-02-19.
  • 3覃冬梅,胡占义,赵永恒.一种基于主分量分析的恒星光谱快速分类法[J].光谱学与光谱分析,2003,23(1):182-186. 被引量:30
  • 4李乡儒.几个学习算法及其在星系光谱分类中的应用[D].北京:中国科学院北京天文台,2007.
  • 5KURTZ M J. Progress in automation techniques for mk classfication[J]. Astrophys, 2004, (4): 111-117.
  • 6CHEN OT-C. Motion estimation using a one-dimentional gradient descent search[J]. IEEE Transactions Circuits and System for VideoTechnology, 2000, 10(4): 608-616.
  • 7BAILER-JONEA CAL. Techniques for mk classfication[J]. Astrophysics and Space Science, 2002, (24): 21-30.
  • 8王文胜,杨静宇,陈伏兵.图像特征抽取的奇异值分解方法[J].计算机工程,2006,32(8):32-33. 被引量:10

二级参考文献14

  • 1GolubGH VanLoanCF 袁亚湘译.矩阵计算[M].北京:科学出版社,2001.631-639.
  • 2[1]Kent S M.Astrophysics and Space Science, 1994,217(1-2):27.
  • 3[3]Kurtz M J.Progress in Automation Techniques for MK Classification,In R F Garrison,editor.The MK Process and Stellar Classification,1984.
  • 4[4]Gupta R A,Gulati R,Gothoskar P and Khobragade S.Astrophys. J.,1994,426:340.
  • 5[5]Karl Glazebrook,Alison R Offer,Kathryn Deeley.Astrophys. J, 1998,492:98.
  • 6[6]Huang L Y,Sun F M,Hu Z Y.A New Automatic Quasers Recognition Based on PCA and the Hough Transform, ICPR'2000,Barcelona, Spain,2000, Vol.Ⅱ,499.
  • 7[8]Shai Ronen,Alfonso Aragon-Salamanca,Ofer Lahav.Principal Component Analysis of Synthetic Galaxy Spectra,arXiv:astro-ph/9805130,11 May 1998.
  • 8[9]Coryn A L Bailer-Jones,Mike Irwin,Ted von Hippel. M. N. R. A. S.,1998,298:361.
  • 9[10]Connolly A J,Szalay A S,Bershady M A,Kinney A L and Calzetti D.Astronomical Journal, 1995,110(3):1071.
  • 10Duda R O,Hart P E,Stork D G.Pattern Classification(2nd Edition)[M].New York:John Wiley & Sons,2001:117-123.

共引文献35

同被引文献28

  • 1夏骄雄,徐俊,吴耿锋.“数据库主成份提取”方法及其应用[J].计算机工程与应用,2006,42(20):134-137. 被引量:3
  • 2贺玲,吴玲达,蔡益朝.数据挖掘中的聚类算法综述[J].计算机应用研究,2007,24(1):10-13. 被引量:225
  • 3张嫣,安中印,宋中山.数据挖掘中的聚类算法[J].电脑知识与技术,2007,0(4):15-17. 被引量:3
  • 4Zhao G, Zhao Y H, Chu Y Q, et al. Research in Astronomy and Astrophysics, 2012, 12(7): 723.
  • 5Katz D, Soubiran C, Cayrel R, et al. Astronomy and Astrophysics, 1998, 338(1): 151.
  • 6Soubiran C, Katz D, Cayrel R. Astronomy and Astrophysics Supplement Series, 1998, 133(2): 221.
  • 7Elsner B, Bastian U, Liubertas R, et al. Baltic Astronomy, 1999, 8: 385.
  • 8Fuentes O, Gulati R K. Blows and Glows 2001, 10: 209.
  • 9Starck J L, Siebenmorgen R, Gredel R. The Astrophysical Journal, 1997, 482: 1011.
  • 10Castelli F, Kurucz R L. Modelling of Stellar Atmospheres. ed. Piskunov N, Weiss W W, Gray D F(San Francisco: ASP), 2003. A20.

引证文献4

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部