期刊文献+

一类高维Laplace方程的拟周期解(英文)

QUASI-PERIODIC SOLUTIONS OF A CLASS OF HIGHER DIMENSIONAL LAPLACE EQUATIONS
下载PDF
导出
摘要 本文利用KAM理论,证明了一类带有常位势m(m>2)以及Fourier乘子M_ξ的高维Laplace方程△u+(m+M_ξ)u+u^3=0,在周期边值条件下拟周期解的存在性。 In this paper, we prove the existence of plenty of quasi-periodic soltuions for the higher dimensional Laplace equations with constant potential m 〉 2 and Fourier multiplier Mξ △u + (m + Mξ)u + u^3 = 0, subject to periodic boundary conditions via KAM theory
作者 牛华伟
出处 《南京大学学报(数学半年刊)》 CAS 2007年第2期294-309,共16页 Journal of Nanjing University(Mathematical Biquarterly)
关键词 拟周期解 KAM理论 quasi-periodic solution, KAM theory
  • 相关文献

参考文献11

  • 1Bambusi D. Birkhoff Normal form for some Nonlinear PDEs. Commun. Math. Phys., 2003, 234: 253-285.
  • 2Chierchia L and You J G. KAM Tori for 1D Nonlinear Wave Equations with Periodic Boundary Conditions. Commun. Math. Phys., 2000, 211: 498-525.
  • 3Craig W and Worfolk P. An Integrable Normal Form for Water Waves in Infinite Depth. Physica D, 1995, 84: 513-531.
  • 4Geng G and You J G. A KAM Theorem for One Dimensional SchrSdinger Equation with Periodic Boundary Conditions. J. Diff. Eqs, 2005, 209: 1-56.
  • 5Geng J and You J. A KAM Theorem for Hamiltonian Partial Differential Equations in Higher Dimensional Spaces. Commun. Math. Phys., 2006, 262: 343-372.
  • 6Kuksin S B. Nearly Integrable Infinite Dimensional Hamiltonian Systems. Lecture Notes in Math- ematics, vol. 1556 Berlin: Springer, 1993.
  • 7Kuksin S B and PSschel J. Invariant Cantor Manifolds of Quasiperiodic Oscillations for a Nonlinear Schrodinger Equation. Ann. Math., 1996, 143: 149-179.
  • 8Poschel J. Quasi-Periodic Solutions for a Nonlinear Wave Equation. Comment. Math. Helvetici, 1996, 71: 269-296.
  • 9Poschel J. A KAM Theorem for some Nonlinear Partial Differential Equations. Ann. Sc. Norm. sup. Pisa CI. sci., 1996, 23: 119-148.
  • 10Scheurle J. Quasi-Periodic Solution of a Semi-linear Equation in a Two Dimensional Strip. Dynamical Problems in Mathematical Phys., 1983, 26: 201-223.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部