期刊文献+

龟裂链霉菌zwf2基因阻断提高土霉素生物合成 被引量:9

Disruption of zwf2 gene to improve oxytetraclyline biosynthesis in Streptomyces rimosus M4018
下载PDF
导出
摘要 葡萄糖-6-磷酸脱氢酶(G6PDH)是链霉菌磷酸戊糖途径中第一个酶("看家"酶),也是形成NADPH的关键酶,由zwf1和zwf2基因编码。以温敏型质粒pKC1139为基础构建了用于阻断龟裂链霉菌zwf2的重组质粒pKC1139-zwf2′,通过大肠杆菌GM2929去甲基化pKC1139-zwf2′后电转至原始龟裂链霉菌M4018感受态细胞,筛选得到转化子。转化子进一步通过PCR鉴定和点杂交印迹分析鉴定,证明是zwf2基因阻断的阳性突变子命名为M4018-Δzwf2。以原始菌株为对照,突变子摇瓶发酵结果表明:突变子的葡萄糖-6-磷酸脱氢酶酶活是原始菌的50%左右,但土霉素生物合成水平则提高了27%;在细胞生长方面,二者均在第4d进入生长稳定期而开始大量合成土霉素,发酵结束时细胞菌体浓度基本相同,但突变子的单位菌丝体土霉素生物合成能力则提高了31%。因此,zwf2的阻断有利于土霉素的生物合成,而对细胞生长没有明显影响。 Genes of zwfl and zwf2 encode two isozymes of glucose-6-phosphate dehydrogenase (G6PDH) of Streptomyces, respectively. G6PDH is the first enzyme in the oxidative pentose phosphate pathway (PPP) and the key enzyme for NADPH generation.Based on thermal sensitive plasmid pKCl139, a recombinant plasmid pKC1139-zwf2' was constructed and verified with restriction enzyme digestion. The plasmid pKC1139-zwf2' was electropolated into competent Streptmyces rimosus M4018 cells after it was demethylated by E.coli GM2929. Transformants grown on Tryptone Soya Agar (TSA) plate containing 500ug/mL apramycin were selected, and identified using dot hybridization analysis and PCR amplification with apramycin resistant gene as primers. A positive clone was then selected and designated M4018-Δ zwf2. With parent strain S. rimosus M4018 as control, mutant M4018-Δzwf2 was cultured in shaking flask. Specific acitivity of G6PDH of M4018-Δ zwf2 was only half of that of parent strain whereas yield of oxytetracycline (OTC) of mutant was 27% higher, to the mutant had a similar biomass profileto that of the control biosynthesis started when the growth entered stationary phase on the 4th day. However, specific oxytetracycline production of mutant was 31% higher thanthat of the parent strain, indicating that zwf2 disruption could enhance oxytetracycline biosynthesis in S. rimosus M4018-Δ zwf2.
出处 《微生物学报》 CAS CSCD 北大核心 2008年第1期21-25,共5页 Acta Microbiologica Sinica
基金 国家基础科学研究项目(2007CB714303) 校优秀青年教师科研基金 上海市重点学科建设项目(B505)~~
关键词 葡萄糖-6-磷酸脱氢酶 zwf2 龟裂链霉菌M4018 土霉素生物合成 Glucose-6-phosphate dehydrogenase zwf2 S. rimosus M4018 Oxytetracycline biosynthesis
  • 相关文献

参考文献1

二级参考文献17

  • 1张翀,邢新会.辅酶再生体系的研究进展[J].生物工程学报,2004,20(6):811-816. 被引量:21
  • 2Walfridsson M, Bao X, Anderlund M, et al. Ethanolic fermentation of xylose with Saccharomyces cerevlsiae harboring the Thermus thermophilus- xylA gene which expresses an active xylose (glucose) isomerase. Appl Environ Microbiol, 1996,62:4648 - 4651.
  • 3Marko K, Maurice T, Jasper D, et al. Evolutionary engineering of mixed-sugar utilization by a xylose-fermenting Saccharomyces cerevisiae strain. FEMS Yeast Res, 2005, 5:925 -934.
  • 4Jeffries T W, Jin Y S. Metabolic engineering for improved fermentation of pentoses by yeasts. Appl Microbiol Biotechnol,2004, 63(5) :495 -509.
  • 5Berrios-Rivera S J, Bennett G N, San K Y. Metabolic engineering of Escherichia coli: increase of NADH availability by overexpressing an NAD^ + -dependent formate dehydrogenase.Metab Eng, 2003, 4:217 - 229.
  • 6Berrios-Rivera S J, Bennett G N, San K Y. The effect of increasing NADH availability on the redistribution of metabolic fluxes in Escherichia coli chemostat cultures. Metab Eng, 2003,4 : 230 - 237.
  • 7Berrios-Rivera S J, San K Y, Bennett G N. The effect of NAPRTase overexpression on the total levels of NAD, the NADH/NAD^ + ratio, and the distribution of metabolites in Escherichia coli. Metab Eng, 2003, 4:238 -247.
  • 8Lopez D F, Kleerebezem M, de Vos, et al. Cofactor engineering: a novel approach to metabolic engineering in Lactococcis lactis by controlled expression of NADH oxidasc. J Bacteriol, 1998, 180:3804 - 3808.
  • 9Jackson B, Peake J, White A. Jackson Structure and mechanism of proton-translocating transhydrogenase. FEBS Lett, 1999, 464 : 1 - 8.
  • 10Anderlund M, Nissen T L, Nielsen J, et al. Expression of the Escherichia coli pntA and pntB genes, encoding nicotinamide nucleotide transhydrogenase, in Saccharomyces cerevisiae and its effect on product formation during anaerobic glucose fermentation. Appl Environ Mierobiol, 1999, 65(6) : 2333-2340.

共引文献9

同被引文献136

引证文献9

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部