期刊文献+

冷却介质在层板内流动特性研究(第二部分 数值模拟复杂结构内流场) 被引量:3

An investigation of coolant flow performance within laminated plate (Ⅱ Numerical simulation of flow field of complex structure)
下载PDF
导出
摘要 用商业软件模拟复杂层板中冷却介质流动特性,以粒子图像速度(PIV)测量技术获得的实验数据,验证所选择的数学模型和数值方法。实验是在确定的径高比1及入口雷诺数4.1×104下进行的。用验证的数学模型及数值方法,向上下扩展雷诺数至2.05×104及8.2×104,改变层板径高比至0.5及2.0,模拟这两个参数变化对层板内冷却介质流场的影响。模拟结果指出:在相同的径高比下,入口雷诺数的改变对层板内冷却介质流动特性影响很小;相反在相同的入口雷诺数下,径高比改变对层板内冷却介质流动特性有明显的影响。 The fluid flow performance within a laminated plate was invetsigtaed through a commercial software. The mathematical model and numerical method is validated using the experimental data obtained by PIV meaurement technique. The experiment was carried out at a given inlet Reynolds number of 4.1 ×10^4 and a ratio of height to diameter of 1. The numerical simulation of the influence of the Reynolds number and ratio of height to diameter on the flow performance was conducted by the validated mathematical model and simulation method, and the Reynold number is extended from 2.05 ×10^4 to 8.2 ×10^4, the ratio of height to diameter from 0.5 to 2.0. It is drawn through the numerical simulation that at the same ratio of height to diameter, the influence of the Reynolds number on the flow performance is not sensitive, contrarily at the same Reynolds number, a change in the ratio of height to diameter will result in a notable variation of coolant flow performance within the laminated plate.
出处 《实验流体力学》 CAS CSCD 北大核心 2007年第4期22-26,共5页 Journal of Experiments in Fluid Mechanics
基金 自然科学基金项目90305006 国家安全重大基础研究项目
关键词 航空动力系统 层板冷却 数值模拟 PIV实验验证 aero-propulsion system laminated plate cooling numerical simulation PIV experimental validation
  • 相关文献

参考文献6

  • 1ALDABBAGH L B Y, SEZAI I. Optimum jet-to-jet spacing of heat transfer for staggered arrays of impinging air jets [J]. Int. J. Heat Mass Tran., 2001,44(21) :3997-4007.
  • 2ALDABBAGH L B Y, SEZAI I. Three-dimensional numerical simulation of an array of impinging laminar square jets with spent fluid removal [J]. Int. J. Thermal Sciences, 2004, 43 (3) :241-247.
  • 3BAZDIDI-TEHRANI F, SHAHMIR A, HAGHPARAST- KASHANI A. Numerical analysis of a single row of coolant jets injected into a heated crossflow [ J ]. Journal of Computational and Applied Mathematics, 2004, 168 ( 1 ) : 53-63.
  • 4RHEE DONG-HO, YOON PIL-HYUN. Local heat/mass transfer and flow characteristics array impinging jets with effusion holes ejecting spent air [J]. Int. J. Heat Mass Tran. , 2003, 46(6) : 1049-1061.
  • 5郁新华,全栋梁,刘松龄,胡主根.层板结构内部流场数值模拟研究[J].航空学报,2004,25(6):534-539. 被引量:6
  • 6孔满昭,刘海涌,刘松龄,沈天荣.有错排射流冲击的短通道流场研究[J].航空动力学报,2006,21(1):65-70. 被引量:3

二级参考文献6

  • 1Nealy D A, Relder S B. Evaluation of laminated porous wall material for combustor liner cooling[J].Transations of the ASME,Journal of Engineering for Power,1980, 102:268-276.
  • 2Florschuatz L W,Isoda Y.Flow Distributions and Discharge Coefficient Effects for Jet Array Impingement with Initial Crossflow[J].Transactions of the ASME Journal of Engineering for Power,1983,105:286 ~ 304.
  • 3Florschuetz L W,Berry R A,Metzger D E.Periodic Streamwise Variations of Heat Transfer Coefficients for Inline and Staggered Arrays of Circular Jets with Crossflow of Sjpent Air[J].ASME Journal of Heat Transfer,1980,102:132 ~137.
  • 4Sang Woo Lee,Sang Won Park,Joon Sik Lee.Flow Characteristics Inside Circular Injection Holes Normally Oriented to a Crossflow:Part Ⅰ -Flow Visualizations and Flow Data in the Symmetry Plane[J].Transactions of the ASME Journal of Turbomachinery,123:266 ~ 273.
  • 5Walters D K,Leylek J H.A Detailed Analysis of Film Cooling Physics; Part Ⅰ -Streamwise Injection with Cylindrical Holes[J].AS M E Journal of Turbomachinery,2000,122:102~112.
  • 6蔡卫军,宋晓伟,刘高文,许都纯,刘松龄.小长径比直孔内的流场实验研究[J].推进技术,2003,24(5):440-443. 被引量:4

共引文献7

同被引文献27

  • 1王志瑾,徐庆华.V-型皱褶夹芯板与隔声性能实验[J].振动工程学报,2006,19(1):65-69. 被引量:20
  • 2Glass D E.Ceramic matrix composite (CMC) thermal protec- tion systems (TPS) and hot structures for hypersonic vehi- cles [ R ].AIAA 2008-2682.
  • 3Liu S,Zhang B M.Effects of active cooling on the metal ther- mal protection systems [ J ]. Aerospace Science and Technolo-gy,2011,15(7) : 526-533.
  • 4Rakow J F, Waas A M. Response of actively cooled metal foam sandwich panels exposed to thermal loading[ J ]. AIAA J.,2007,2(45) : 329-336.
  • 5Rakow J F,Waas A M.Thermal buckling of metal foam sand- wich panels for actively cooled thermal protection systems [ J ] .J.Spaeecraft Rockets ,2005,5(42) : 832-844.
  • 6Kim T, Hodson H P, Lu T J.Contribution of vortex structures and flow separation to local and overall pressure and heat transfer characteristics in an ultralightweight lattice material [J] .International Journal of Heat and Mass Transfer, 2005, 48(19-20) : 4243-4264.
  • 7Wen T, Tian J, Lu T J, et al. Forced convection in metallic ho- neycomb structures [ J ]. International Journal of Heat and Mass Transfer,2006,49(19-20) : 3313-3324.
  • 8Wang B, Cheng G D.Design of cellular structures for optimum efficiency of heat dissipation [ J ]. Structural and Muhidiscipli- nary Optimization ,2005,50(6) : 447-458.
  • 9Wang B, Cheng G D, Jiang L. Design of multi-tubular heat exchangers for optimum efficiency of heat dissipation [ J ]. Engineering Optimization,2008,40(8) : 767-785.
  • 10Liu S T, Zhang Y C, Liu P. New analytical model for heat transfer efficiency of metallic honeycomb structures [ J ]. In- ternational Journal of Heat and Mass Transfer, 2008,51 ( 25-26) : 6254-6258.

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部