期刊文献+

基于均匀圆阵的模式空间矩阵重构算法 被引量:21

The MODE-TOEP Algorithm Based on Uniform Circular Array
下载PDF
导出
摘要 该文提出了一种新的均匀圆阵解相干方法,这里称为模式空间矩阵重构算法(MODE-TOEP)。该算法对均匀圆形阵列(UCA)的输出信号进行模式激励,使其成为模式空间内的虚拟阵列(VULA);在此基础上重构一个Toeplitz矩阵,成功地估计出相干源的来波方向。MODE-TOEP算法不需要进行平滑计算,从而减少了计算量。计算机仿真实验表明MODE-TOEP算法比传统的模式空间平滑类算法(MODE-FSS,MODE-FBSS)有更好的估计性能。 The MODE-TOEP algorithm is proposed to estimate DOA of coherent signals on a Uniform Circular Array (UCA). Firstly, the mode excitation method is used to transform the UCA in element space into a virtual ULA (VULA) in mode space. Then a Toeplitz matrix can be reconstructed to estimate DOA of coherent signals successfully. MODE-TOEP algorithm has less computational burden due to non-spatial smoothing. Simulation results show that MODE-TOEP algorithm is effective and has a better performance compared with conventional MODE-SS algorithm.
出处 《电子与信息学报》 EI CSCD 北大核心 2007年第12期2832-2835,共4页 Journal of Electronics & Information Technology
关键词 均匀圆阵 DOA估计 模式激励 相干信源 Uniform Circular Array (UCA) DOA estimation Mode excitation method Coherent signals
  • 相关文献

参考文献10

  • 1Schmidt R O. Multiple emitter location and signal parameter estimation [J].IEEE Trans. on AP, 1986, 34(2): 276-280.
  • 2Roy R and Kaitath T. ESPRIT-estimation of signal parameters via rotational invariance technique [J]. IEEE Trans. on ASSP, 1989, 37(7): 984-995.
  • 3Lai W K and Ching P C. A new approach for coherent direction of arrival estimation [J]. ISCAS' 98 Proceedings of the 1998 IEEE International Symposium on Circuits and Systems, Hong Kong, 1998, 5: 9-12.
  • 4Haber F and Zoltowski M. Spatial spectrum estimation in a coherent signal environment using an array in motion [J]. IEEE Trans. on AP, 1986, 3(3): 301-310.
  • 5Krim H and Viberg M. Two Decades of Array Signal Processing [J]. IEEE Trans. on SP, 1996, 13(4): 67-94.
  • 6Jeng S S, Lin H P, and Okamoto G, et al.. Multipath direction finding with subspace smoothing [A]. IEEE ICASSP [C]. Munich: IEEE, 1997, 5: 3485-3488.
  • 7Wax M and Sheinvald J. Direction finding of coherent signals via spatial smoothing for uniform circular arrays [J]. IEEE Trans. on AP, 1994, 42(5): 613-619.
  • 8Eiges R and Griffiths H D. Mode space spatial spectral estimation for circular arrays [J]. IEE Proceedings F Radar, Sonar and Navigation, London, 1994, 14: 300-306.
  • 9马常霖,彭应宁,田立生,刘建华.均匀圆阵相干信源DOA估计的模式平滑算法[J].电子科学学刊,1998,20(1):14-19. 被引量:12
  • 10韩芳明,张守宏.用改进的MUSIC算法实现相干多径信号分离[J].系统工程与电子技术,2004,26(6):721-723. 被引量:6

二级参考文献7

  • 1高世伟,保铮.一种用于相干和不相干窄带信号源高分辨的广义信号子空间估计方法[J].电子学报,1990,18(4):42-49. 被引量:7
  • 2Schmidt R O. Multiple Emitter Location and Signal Parameter Estimation[J]. IEEE Trans. on AP., 1986, AP-34: 276-280.
  • 3Roy R, Kailath T. ESPRIT--Estimation of Signal Parameters via Rotational Invariance Techniques[J]. IEEE Trans. on ASSP, 1989, l37: 984-995.
  • 4Lai W K, Ching P C. A New Approach for Coherent Direction-of-Arrival Estimation[J]. ISCAS' 98. Proceedings of the 1998 IEEE International Symposium on, Circuits and Systems, 1998,5:9-12.
  • 5Haber F, Zoltowski M. Spatial Spectrum Estimation in a Coherent Signal Environment Using an Array in Motion[J]. IEEE Trans. on AP., 1986,3: 301-310.
  • 6Krim H, Viberg M. Two Decades of Array Signal Processing[J]. IEEE Signal Processing Magazine, 1996,13(4): 67-94.
  • 7Naidu Prabhakar S. Sensor Array Singal Processing[M]. Florida: CRC Press, 2001.

共引文献16

同被引文献130

引证文献21

二级引证文献53

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部