期刊文献+

环F_2+uF_2的Galois扩张上的迹码 被引量:3

Trace Codes over Galois Extensions of Ring F_2+uF_2
下载PDF
导出
摘要 环F2+uF2是介于环Z4与域F4之间的一种四元素环,因此分享了环Z4与域F4的一些好的性质,此环上的编码理论研究成为一个新的热点。该文给出了环F2+uF2的Galois扩张的相关理论,指出此Galois扩环的自同构群不同于Z4环上的Galois扩环的自同构群;定义了Galois扩环上的迹码的概念及子环子码的概念,证明了此Galois扩环上的一个码的对偶码的迹码是该环的子环子码的对偶码。 F2+uF2 is a ring with four elements which shares some good properties of both Z4 and F4. Coding theory over this ring has recently received a great deal of interest among coding theorists. This paper gives the theory of Galois extensions over F2 +uF2, and shows that the automorphism groups of these Galois extensions are different from the corresponding groups over Z4. Trace codes and subring subcodes over Galois extensions are defined, and it is proved that the trace codes of dual codes of linear codes are the dual codes of subring subcodes.
作者 吴波 朱士信
出处 《电子与信息学报》 EI CSCD 北大核心 2007年第12期2899-2901,共3页 Journal of Electronics & Information Technology
基金 国家自然科学基金(60673074) 安徽大学创新团队资助课题
关键词 GALOIS扩张 自同构群 迹码 子环子码 Galois extensions Automorphism groups Trace codes Subring subcodes
  • 相关文献

参考文献9

  • 1Dougherty S T, Gaborit P, and Harada M. Type Ⅱcodes over F2+uF2. IEEE Trans. on Info. Theory, 1999, 45(1): 32-45.
  • 2Bonnecaze A and Udaya P. Cyclic codes and serf-dual codes over F2 + uF2. IEEE Trans. on Info. Theory, 1999, 45(4): 1250-1255.
  • 3Udaya P and Bonnecaze A. Decoding of cyclic codes over F2 +uF2. IEEE Trans. on Info. Theory, 1999, 45(6): 2148- 2157.
  • 4Dougherty S T, Gaborit P, Harada M, and Munemasa A, et al. Type IV self-dual codes over rings. IEEE Trans. on Info. Theory, 1999, 45(7): 2345-2358.
  • 5Ling S and Sole P. Duadic codes over F2 +uF2. Applicable Algebra in Engineering, Communication and Computing, 2001, 12(5): 365-379.
  • 6Dougherty S T and Shiromoto K. Maximum distance codes over rings of order 4. IEEE Trans. on In fo. Theory, 2001, 47(1): 400-404.
  • 7MacWilliams F J and Sloane N J A. The Theory of Error Correcting Codes. Amsterdam, the Netherlands: North- Holland, 1977: 93-154.
  • 8Mcdonald B R. Finite rings with identity. New York: Marcel Dekker, 1974: 291-335.
  • 9Wan Zhe-xian. Quaternary Codes. Singapore: World Scientific, 1997: 93-112.

同被引文献15

  • 1李晶晶,高健.环F_p+uF_p Galois扩张上的迹码[J].山东理工大学学报(自然科学版),2011,25(5):49-51. 被引量:1
  • 2张莉娜,钱建发.多项式剩余类环上循环码新的表示[J].应用数学与计算数学学报,2006,20(2):117-120. 被引量:1
  • 3Hammons A.R,Kumar P.V.The Z4- linearity of kerdock,preparata,goethals,and relate codes[J]. IEEE Trans.lnfor~ Theory,1994,40(2): 301-318.
  • 4Wolfmann J. Negacyclic and cyclic codes over Z[J]. IEEE Trans. Inform. Theory, 1999, 45(7): 2527-2532.
  • 5Pramod Kanwar, Sergio IL Lopez-Permouth. Cyclic codes over the Integers Modulo p~[J]. Finite Fields and Their Applications, 1997, 3 : 334-352.
  • 6Bhaintwal M., Wasan S.K. On the quasi-cyclic codes over Z[J]. Appl. Algebra Engrg. Comm. Comput, 2009, 20: 459-480.
  • 7SHI Min-jia, ZHU Shi-xin. Constaeyclie codes over ring F+uFq+'" +u'-~Fq [J]. Journal of University of Science and Technology of China, 2009, 39(6): 583-587.
  • 8Hai. Q. Dinh. Constacyclic codes of length p' over F.+uF. [J]. Journal of algebra, 2010, 324 : 940-950.
  • 9Xiaoshan Kai, Shixin Zhu, Ping Li. (l+Au) Constaeyclie codes over F,[u]l<u'>[J]. Journal of the Franklin Institute, 2010, 347:751-762.
  • 10Hai Quang Dinh, Sergio R. Lopez-Permouth. Cyclic and Negacyclic codes over Finite Chain Rings [J]. 1EEE. Trans. lnform~Theory, 2004, 50:1728-1744.

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部