期刊文献+

基于粗糙集-支持向量机理论的过滤误报警方法 被引量:4

An Approach to Filter False Positive Alerts Based on RS-SVM Theory
下载PDF
导出
摘要 为过滤入侵检测系统报警数据中的误报警,根据报警的根源性和时间性总结出了区分真报警和误报警的19个相关属性,并提出了一种基于粗糙集-支持向量机理论的过滤误报警的方法。该方法首先采用粗糙集理论去除相关属性中的冗余属性,然后将具有约简后的10个属性的报警数据集上的误报警过滤问题转化为分类问题,采用支持向量机理论构造分类器以过滤误报警。实验采用由网络入侵检测器Snort监控美国国防部高级研究计划局1999年入侵评测数据(DARPA99)产生的报警数据,结果表明提出的方法在漏报警约增加1.6%的代价下,可过滤掉约98%的误报警。该结果优于文献中使用相同数据、相同入侵检测系统的其它方法的结果。 To filter false positive alerts generated by Intrusion Detection Systems (IDS), 19 related attributes for distinguishing false positive alerts from true alerts are summarized according to the root and timeliness of intrusion alerts, and an approach to filter these false positive alerts based on RS-SVM (Rough Set and Support Vector Machine) theory is proposed. First, redundant attributes are removed and 10 attributes are obtained utilizing rough set theory in the proposed approach. Then the problem of filtering false positive alerts on the dataset with those 10 attributes is transformed to classification problem, and the classifier is constructed using support vector machine theory. The experimental data is the alert dataset raised by Snort, a network intrusion detection system, monitoring the Defense Advanced Research Projects Agency 1999 intrusion evaluation data (DARPA99). The experimental results show that the proposed approach can reduce about 98% false positive alerts at the cost of increasing about 1.6% false negative alerts. The results of this method are better than those of the other methods that adopt the same dataset and same IDS reported in the literature.
出处 《电子与信息学报》 EI CSCD 北大核心 2007年第12期3011-3014,共4页 Journal of Electronics & Information Technology
基金 国家863计划项目(2004AA1Z2280) 国家973发展规划项目(2001CB309403)资助课题
关键词 入侵检测 误报警 漏报警 粗糙集 支持向量机 Intrusion detection False positive alert False negative alert Rough Set (RS) Support Vector Machine
  • 相关文献

参考文献10

  • 1Julisch K. Using root cause analysis to handle intrusion detection alarms. [PhD thesis], University of Dortmund, 2003.
  • 2Manganaris S, Christensen M, and Zerkle D, et al.. A data mining analysis of RTID alarms. Computer Networks, 2000,34(4): 571-577.
  • 3Wang J and Lee I. Measuring false-positive by automated real-time correlated hacking behavior analysis. Information Security 4th International Conference, Kosice, Slovakia, Heidelberg: Springer-Verlag, 2001: 512-535.
  • 4Alharby A and Imai H. IDS false alarm reduction using continuous and discontinuous patterns. Proceeding of Applied Cryptography and Network Security. New York, USA, Heidelberg: Springer-Verlag, 2005: 192-205.
  • 5Shin Moon Sun, Kim Eun Hee, and Ryu Keun Ho. False alarm classification model for network-based intrusion detection system. Proceeding of the 5th International Conference on Intelligent Data Engineering and Automated Learning, Exeter, UK, Heidelberg: Springer-Verlag, 2004: 259-265.
  • 6Pietraszek T. Using adaptive alert classification to reduce positive in intrusion detection. Proceeding of the 7^th International Symposium on Recent Advance in Intrusion Detection, Riviera, France, Heidelberg: Springer-Verlag, 2004 102-124.
  • 7Zhang Z and Shen H. Suppressing false alarms of intrusion detection using improved text categorization method. Proceedings of the 2004 IEEE International Conference on e-Technology, e-Commerce and e-Service, Talpei, Taiwan, Estats Units: IEEE Computer Society Press, 2004: 163-166.
  • 8Law Kwok Ho and Kwok Lam For. IDS false alarm filtering using KNN classifier. Proceeding of the 5th International Workshop on Information Security Applications, Jeju Island, Korea, Heidelberg: Springer-Verlag, 2004: 114-121.
  • 9Walczak B and Massart D L. Rough sets theory. Chemometrics and Intelligent Laboratory Systems, 1999, 47(1): 1-19.
  • 10Vapnik V N. An overview of statistical learning theory. IEEE Trans. on Neural Networks, 1999, 10(5): 988-999.

同被引文献32

引证文献4

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部