期刊文献+

复指数Dirichlet级数所表示的整函数的增长性 被引量:2

The Growth of An Entire Function Represented by Dirichlet Series with Complex Exponents
下载PDF
导出
摘要 由Dirichlet级数表示的整函数f(z)在带形中有界,其系数{an}和指数{λn}(n= 1,2,…)是复数列.文中引入■-笔次和下■-级,讨论f(z)具有■-级和下■-级的条件. Let f be an entire function represented by Dirichlet series, which is bounded in a horizontal stirp, its coefficients {an} and exponents {λn} (n = 1,2,...) are sequences of complex numbers. The authors introduce ψ-order and lower ψ-order and study the conditions for f having ψ-order and lower ψ-order respectively.
出处 《数学物理学报(A辑)》 CSCD 北大核心 2007年第6期1013-1020,共8页 Acta Mathematica Scientia
基金 国家自然科学基金(10071005) 江西师范大学博士启动基金 江西师范大学青年成长基金资助
关键词 整函数 DIRICHLET级数 增长性. Entire function Dirichlet series Growth.
  • 相关文献

参考文献7

  • 1Mandelbrojt S. Dirichlet Series, Principles and Methods. Dordrecht: D Reidel Publisning Company, 1972. 14-36.
  • 2Deng Guantie. Gap theorems for entire functions. Kodai Math J, 1994, 17:125-132.
  • 3Deng Guantie. Exponential system in a weighted Banach space. J Approx Theory, 2003, 125:1-9.
  • 4Volkovysky L, Lunts G, Aramanovich I. Problems in the Theory of Functions a Complex Variable. Moscow: Mir Publishers, 1977.
  • 5Andre Boivin, Zhu Changzhong. The Growth of an Entire Function and its Dirichlet Coefficients and Exponents. Complex Var Theory Appl, 2003, 48:397-415.
  • 6余家荣,丁晓庆,田范基.Dirichlet级数与随机Dirichlet级数.武汉:武汉大学出版社,2004.34-37.
  • 7Boas Jr R P. Entire Functions. New York: Academic Press, 1954. 85-91.

同被引文献9

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部