期刊文献+

非线性Schr■dinger方程的一种数值模拟方法 被引量:1

A Numerical Simulation Method of Nonlinear Schr■dinger Equation
下载PDF
导出
摘要 该文通过对非线性Schr■dinger方程增加耗散项,提出了一种新的三层线性差分格式.证明了该格式满足连续方程所具有的两个守恒量及收敛性和稳定性.通过数值例子与已知格式进行比较,结果表明该格式计算简单且具有较高精度. In this paper, the authors propose a three-level and linear difference scheme through adding a dissipation term to the nonlinear SchrSdinger equation. It is proved that the scheme preserves two conservative quantities that the continuous equation owns. Comparing it with the known schemes by the numerical examples, the authors get the conclusion that the scheme is computed easily and has higher precision.
出处 《数学物理学报(A辑)》 CSCD 北大核心 2007年第6期1111-1117,共7页 Acta Mathematica Scientia
关键词 NLS方程 耗散项 差分格式 收敛性 稳定性. NLS equation Dissipation Difference scheme Convergence Stability.
  • 相关文献

参考文献4

二级参考文献8

  • 1Zhang Fei,Appl Math Comput,1995年,71卷,165页
  • 2Chang Q,J Comput Math,1986年,4卷,191页
  • 3Zhang Fei,Appl Math Comput,1995年,71卷,165页
  • 4Chang Q,J Comput Math,1986年,4卷,191页
  • 5常谦顺,科学通报,1981年,18卷,1094页
  • 6Zhang Fei,Appl Math Comput,1995年,71卷,165页
  • 7Chang Q,J Comput Math,1986年,4卷,191页
  • 8张鲁明,常谦顺.非线性Schrdinger方程的守恒数值格式[J].计算物理,1999,16(6):661-668. 被引量:14

共引文献26

同被引文献20

  • 1王廷春,张鲁明.对称正则长波方程的拟紧致守恒差分逼近[J].数学物理学报(A辑),2006,26(B12):1039-1046. 被引量:24
  • 2Akrivis G D, Dogalis V A, Karakashina O A. On fully discrete Galerkin methods of second-order temporal accuracy for the nonlinear Schrodinger equation. Numer Math, 1991, 59:31-53.
  • 3Akrivis G D. Finite difference discretization of the cubic SchrSdinger equation. IMA J Numer Anal, 1993, 13:115-124.
  • 4Sonnier W J, Christov C I. Strong coupling of Schrgdinger equations: Conservative scheme approach. Math Comput Simul, 2005, 69:514-525.
  • 5Lamb G L. Elements of Soliton Theorey. New York: John Wiley Sons,1980.
  • 6Ablowitz M J. Solitons and the Inverse Transform. Philadelpha: SIAM, 1981.
  • 7Hasegawa A. Optical Solitons in Fibers. Berlin: Springer-verlag, 1989.
  • 8gang J. Multi Solitons perturbation theorey for themanakov equations and its applications to nonlinear optics. Phys Rev E, 1999, 59: 239a.
  • 9Gross E P. Hydrodynamics of a superfluid condensate. J Math Phys, 1963, 4:195-207.
  • 10Pitaevskii L P. Vortex lines in an imperfect bose gas. Soviet Phys JETP, 1961, 13:451-454.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部