期刊文献+

一类非线性扰动系统的L_∞稳定性

L_∞ Stability of Nonlinear Systems with a Structured Perturbation
下载PDF
导出
摘要 针对一类带有扰动的非线性系统,在它的标称系统的自由动态是一致渐近稳定和它的标称系统存在ISS-Lyapunov函数条件下,运用Lyapunov方法,得出该类系统是小信号L_∞稳定和L_∞稳定的充分条件. This paper deals with nonlinear systems with a structured perturbation. On the condition that its nominal system exists a ISS-Lyapunov function and its free dynamic systems are uniformly asymptotical stable respectively, based on the Lyapunov method, we derive sufficient conditions which guatantees this kind of systems are small-signal L∞ stable and small-signal L∞, stable.
出处 《应用泛函分析学报》 CSCD 2007年第4期349-352,共4页 Acta Analysis Functionalis Applicata
基金 河南省教育厅自然科学基础研究(200510459002)
关键词 非线性 扰动 小信号 L∞稳定性 L∞稳定性 nonlinear perturbation small-signal L∞stsbility L∞ stsbility
  • 相关文献

参考文献6

  • 1Khalil H. K Nonlinear Systems 3rd[M]. Upper Saddle River: Pentice-Hall, 2002. 195-217.
  • 2Safonov M. Stability and Robustness of Multivarible Feedback Systems[M]. MIT Press, Cambridge. MA,1980.
  • 3Desoer C A, Vidyasagar M. Feedback Systems: Input-Output Properties[M]. Academic Press, New York, 1975.
  • 4Zames G. On the input-output stability of nonlinear time-varying feedback systems, part Ⅰ[J]. IEEE Trans Automat Contr, AC-11,1966. 228-238.
  • 5Eduardo D Sontag, Yuan Wang. On characterizations of the input-to-state stability property[J]. System Control Letters, 1995,24 : 351-359.
  • 6Artstein Z. Examples of stabilization with hybrid feedback [J]. in Hybrid Systems Ⅲ: Verification and Control, R. Alur, et al. eds. Lecture Notes in Computer Science, Berlin: Springer-Verlag, 1996,1066: 173-185.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部