摘要
以固定电荷模型为基础,采用扩展的Nernst-Planck方程结合Gouy-Chapman(GC)理论和Donnan平衡模型,通过一系列假设和推导,得到多组分离子溶液透过纳滤膜时离子浓度在膜微孔内梯度微分方程和解膜微孔内梯度微分方程的有关参数和方程。
In this work, on the basis of the fixed charge model and a series of hypotheses and deductions, the extended Nernst-Planck equation, Gouy-Chapman (GC) theory and Donnan equilibrium model were used to gain the differential equation of concentration gradient of ions in the membrane micropores when the multi-component ions solution permeated the nanofiltration membrane. Furthermore, we have solved the related parameters and equations of the differential equation.
出处
《过滤与分离》
CAS
2007年第4期1-4,共4页
Journal of Filtration & Separation
基金
国家"973"计划资助(2003CB615705)
国家经贸委技术创新计划(01BK-221)
关键词
DSPM模型
GC理论
Donnan模型
多组分离子溶液
膜微孔内梯度微分方程
DSPM model
Gouy-Chapman (GC) theory
Donnan equilibrium model
Multi-component ions solution
The differentialequation of concentration gradient of ions in the membrane micropores