期刊文献+

基于数学形态学的灰度图像连接物体分割方法 被引量:8

Grayscale Touching Objects Segmentation by Mathematical Morphological Methods
下载PDF
导出
摘要 由于噪声的存在以及连接物体的特点,传统的标记分水岭算法对包含连接物体的灰度图像很难取得满意的分割结果;特别是在背景并不连通的情况下,误分割更为常见;在标记分水岭算法的基础上,提出了一种连接物体分割方法;将属于鲁棒统计的Hough变换用于提取物体标记扩展了标记分水岭算法的应用范围;针对在分割连接物体时,由于背景并非连通,因此允许背景被分别标记,并通过一个后续滤波步骤用以剔除分割后图像中的背景部分,从而得到精确的分割图像;试验证明该算法运算速度快,鲁棒性好,具有广泛的应用价值。 Due to image noise and the characteristics of images containing touching objects, traditional marker-driven watershed algorithm can not get good segmentation results, especially when the background is not connected. A touching object segmentation method based on mathematical morphology is proposed. By using Hough transform to extract inter markers expands the usability of marker-driven watershed algorithm. In images which contain touching objects, the background is not connected. So it is necessary to allow background to be separately marked, and a post-processing step is used to filter the background in the segmented image. It is proved that the algorithm is not only rapid and robust to parameters change, but also applicable to a wide range of applications.
出处 《计算机测量与控制》 CSCD 2007年第12期1763-1765,共3页 Computer Measurement &Control
基金 总装预研课题资助项目(413250303)
关键词 图像分割 数学形态学 标记分水岭算法 沉浸模拟 image segmentation mathematical morphology marker- driven watershed flooding simulation
  • 相关文献

参考文献9

  • 1Adams R, Bischof L. Seed region growing[J]. IEEE Trans. Pattern Anal. Machine Intell, 1994, (16) 6: 641-647.
  • 2Vincent L, Soille P. Watersheds in digital spaces: an efficient algorithm based on immersion simulations [J]. IEEE Trans. Pattern Anal. Machine Intell. , 1991, (13) 6: 583-598.
  • 3Vincent L. Current topics in applied morphological image analysis [Z]. http://www. vincent-net. com/luc/papers/, 1997.
  • 4Vincent L. Fast Garanulometric methods for the extracton of global image information [A]. Johannesburg, South Africa: In Proc. 11^th annual Symposium of the South African Pattern Recognition Association [C]. 2000: 119-133.
  • 5Zhang Z. Parameter estimation techniques: a tutorial with application to conic fitting [J]. Image and Vision Computing, 1997, (15) 1: 59-75.
  • 6Grimaud M. A new measure of contrast: dynamics [A] . Proc. SPIE Image Algebra and Morphological Image Processing Ⅲ[C]. 1992: 292-304.
  • 7Najman L, Couprie M. Watershed algorithms and contrast preservation [J]. Lecture Notes in Computer Science, 2886, 2003: 62-71.
  • 8Vincent L. Morphological grayscale Reconstruction in image analysis: application and efficient algorithm [J]. IEEE Trans. Image Processing, 1993, (2) 2: 176-201.
  • 9朱凯军,周焰,兰祖送.基于区域分割的雾天图像增强算法[J].计算机测量与控制,2006,14(5):661-663. 被引量:15

二级参考文献9

  • 1Yitzhaky Y,Dror I,Kopeika N S.Restoration of atmospherically blurred images according to weather-predicted atmospheric modulation transfer function[J].Optical Eng.,1998,36 (11).
  • 2Tan K,Oakley J P.Physics based approach to color image enhancement in poor visibility conditions[J].Optical Soc.Am.A,2001,18,(10):2460-2467.
  • 3Oak[ey J P,Satherley B L.Improving image quality in poor visibility conditions using a physical model for degradation[J].IEEE Trans.Image Processing,1998,7 (2):167-179.
  • 4Narasimhan S G,Nayar S K.Removing weather effects from monochrome images[A].Proc.IEEE Conf.Computer Vision and Pattern Recognition[C].2001:186-193.
  • 5Narasimhan S G,Nayar S K.Contrast restoration of weather degraded images[J].IEEE Trans.On Pattern Analysis and Machine Intelligence.Recognition,2003,25 (6):713-723.
  • 6Kim J Y,Kim L S,Hwang S H.An advanced contrast enhancement using partially overlapped sub _ block histogram equalization[J].IEEE Trans.on Circuits and Sys.for Video Tech.,2001,11(4):475-484.
  • 7Gonzalez R C.Digital image processing[M].北京:电子工业出版社,2004.
  • 8谷口庆治[日].数字图象处理[M].北京:科学出版社,2002.
  • 9祝培,朱虹,钱学明,李晗.一种有雾天气图像景物影像的清晰化方法[J].中国图象图形学报(A辑),2004,9(1):124-128. 被引量:115

共引文献14

同被引文献59

引证文献8

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部