期刊文献+

车载GPS/DR组合导航系统自适应信息融合算法研究 被引量:3

Adaptive Data Fusion for Vehicle Integrated GPS/DR Navigation System
下载PDF
导出
摘要 结合全球定位系统(GPS)和航位推算(DR)两种定位方式的优点,构建了基于卡尔曼滤波的自适应联邦滤波算法,实现陆地GPS/DR组合定位系统的数据融合;针对DR子系统的强非线性和扩展卡尔曼滤波算法带来的较大线性化损失,并结合机动加速度均值自适应算法,设计了一种基于U-D分解的自适应迭代卡尔曼滤波算法,更有效的减少DR子系统线性化带来的误差损失,提高定位精度;与同仿真环境下,DR子系统采用扩展卡尔曼滤波方法作了比较,结果表明该信息融合算法能更有效解决DR子系统的线性化误差问题,整个系统数据融合精度更高。 An adaptive federative filtering method based on Kalman Filter is set up for data fusion of Vehicle integrated GPS/DR navigation system by using the advantages of GPS and DR. The adaptive iterative Kalman filter based on the technique of U-D decomposition, which adapts to the mechanical acceleration mean adaptive algorithm, is designed to solve the high non-linearity of the subsystem of DR and decrease the loss of linearization yielded by Extend Kalman Filter. This new data fusion algorithm not only solves the linearization of DR subsystem more efficiently than EKF, but also makes the whole system fusion data more precise. At last the simulation resultes prove these conclusions.
出处 《计算机测量与控制》 CSCD 2007年第12期1807-1809,共3页 Computer Measurement &Control
基金 国家自然科学基金(60374067) 863计划(2005AA735080-7)
关键词 GPS/DR组合导航 信息融合 自适应联邦滤波 迭代卡尔曼滤波 GPS/DR integrated navigation data fusion adaptive federative filtering iterative Kalman filter
  • 相关文献

参考文献5

二级参考文献18

  • 1房建成,申功勋.车载DR系统自适应扩展卡尔曼滤波模型的建立及仿真研究[J].中国惯性技术学报,1998,6(3):24-28. 被引量:10
  • 2房建成,万德钧.GPS组合导航系统在车辆导航中的应用[J].东南大学学报(自然科学版),1996,26(3):96-102. 被引量:22
  • 3房建成,中国惯性技术学报,1998年,6卷,3期,24页
  • 4房建成,东南大学学报,1996年,26卷,3期,96页
  • 5Kao W W,Proc VNIS’91,1991年,635页
  • 6Zhou H R,AIAA J Guidance Control Dynamics,1984年,7卷,5期,596页
  • 7晏春海.面向ITS的车辆GPS/DR组合导航定位[D].上海交通大学学位论文,2003.
  • 8Motorola公司.GT/UT ONCORE用户手册[Z].1998.
  • 9MCL12896D2参考手册[Z].汉铨电子通讯有限公司,20(B.
  • 10iTrax Interface Description.doc[S].2002.

共引文献25

同被引文献19

  • 1王晋国,王卫亚,田丰,魏俊波.智能导航车载系统[J].交通运输工程学报,2005,5(2):106-109. 被引量:9
  • 2马野,王孝通,李博,傅建国.舰船导航信号非线性UKF滤波定位解算方法研究[J].兵工学报,2007,28(5):539-542. 被引量:6
  • 3Marco M, Pedro B, Paulo O, et al. Position USBL/DVL sensor- based navigation filter in the presence of unknown ocean cur- rents[J]. Automatica, 2011, 47(12): 2604-2614.
  • 4Cho B S, Moon W S, Seo W J, et al. A dead reckoning lo- calization system for mobile robots using inertial sensors and wheel revolution encoding[J]. Journal of Mechanical Science and Technology, 2011, 25(11): 2907-2917.
  • 5Hegrenaes O, Hallingstad O. Model-aided INS with sea current estimation for robust underwater navigation[J]. IEEE Journal of Oceanic Engineering, 2011, 36(2): 316-337.
  • 6Yao K, Zhu Q D, Zhang B. On in-situ calibration of SINS and Doppler dead reckoning navigation system[J]. Advanced Mate- rials Research, 2012, 479-481: 2610-2615.
  • 7Loebis D, Sutton R, Chudley J, et al. Adaptive tuning of a Kalman filter via fuzzy logic for an intelligent AUV navigationsystem[J]. Control Engineering Practice, 2004, 12(12): 1531- 1539.
  • 8Khodadadi H, Jazayeri-Rad H. Applying a dual extended Kalman filter for the nonlinear state and parameter estimations of a continuous stirred tank reactor[J]. Computer & Chemical Engineering, 2011, 35(11): 2426-2436.
  • 9Lee Y C, Yu W. Practical map building method for service robot using EKF localization based on statistical distribution of noise parameters[C]//18th IEEE International Symposium on Robot and Human Interactive Communication. Piscataway, NJ, USA: IEEE, 2009: 1072-1077.
  • 10Julier S J, Uhlmann J K. Unscented filtering and nonlinear esti- mation[J]. Proceedings of the IEEE, 2004, 92(3): 401-422.

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部