期刊文献+

基于AUC方法评估多类别贝叶斯分类器的性能 被引量:2

Evaluating performance of multiple Bayes classifier based on AUC method
下载PDF
导出
摘要 分类器评估一般采用准确性评估。理论证明,基于AUC方法评估分类器优于准确性评估方法,但该方法局限于二类分类问题。提出一种将二类分类问题推广到多类分类问题的新方法,用纠错输出码转换得到转换矩阵,通过转换矩阵把多类分类问题转换成二类分类问题,计算二类分类的平均值来评估分类器的性能。新方法在MBNC实验平台下编程实现,并评估贝叶斯分类器的性能,实验结果表明,这种方法是有效的。 The evaluation of classifiers has been an important study in data mining and machine learning field. AUC (area under the receiver operating characteristic curve) is determined as a better way to evaluate classifiers than predictive accuracy. However, AUC only is used for two classes to date. A new method is referred. A conversion matrix is received by using error correcting output codes. Based on conversation matrix, multiple-classifier is turned into two-classifier. Computing the AUC value for each two-classifier and average all of the AUCs of two-classifier. The average of AUC value is used as a criterion for evaluating the performance of classifiers. Making experiment in MBNC experiment platform, the results show that the new method is effective.
出处 《计算机工程与设计》 CSCD 北大核心 2007年第24期5919-5920,5972,共3页 Computer Engineering and Design
基金 安徽省教育厅自然科学基金项目(KJ2007A051)
关键词 分类器评估 准确性评估 二类分类 多类分类 纠错输出码 classification accuracy two-classifier multiple-classifier error correctingoutputcodes
  • 相关文献

参考文献8

  • 1Charles X Ling, Jin Huang, Harry Zhang. AUC: A statistically consistent and more discriminating measure than accuracy[C]. Proceeding of 18th International Conference on Artificial Intelligence,2003:329-341.
  • 2Hand D J,Till R J.A simple generalization of the area under the ROC curve for multiple class classification problems [J]. Machine Learning,2001 (45): 171-186.
  • 3Srinivasan A.Note on the location of optimal classifiers in N-dimensional ROC space [R]. Oxford University Computing Laboratory, 1999.
  • 4程泽凯 ,林士敏 .文本分类器准确性评估方法[J].情报学报,2004,23(5):631-636. 被引量:13
  • 5秦锋,杨波,程泽凯.一种优于准确率的分类学习系统评估度量[C].第六届全球智能控制与自动化大会(WCICA06)论文集,2006:5985-5989.
  • 6Flach P A.The many faces of ROC analysis in machine learning [EB/OL]. http://www.cs.bris.ac.uk/flach/ICML04mtorial/index.hmtl.
  • 7Hand D,Till R J.A simple generalisation of the area under the ROC curve for multiple class classification problems [J]. Machine Learning,2001,45:171-186.
  • 8程泽凯,林士敏,陆玉昌,蒋望东,陆小艺.基于Matlab的贝叶斯分类器实验平台MBNC[J].复旦学报(自然科学版),2004,43(5):729-732. 被引量:27

二级参考文献14

  • 1Y. Yang , J. P. Pedersen. A comparative study on feature selection in text categorization. In: Proc. of the 14th ICML' 971997,412 ~ 420
  • 2Fabrizio Sebastian. Machine learning in automated text categorization. Journal of the ACM(JACM) ,2002,34(1) :1 ~ 47
  • 3边肇祺,张学工.模式识别(第二版).北京:清华大学出版社,2000
  • 4.[EB/OL].TREC官方网站http://trec.nist.gov,.
  • 5.北大中文网页自动分类竞赛规则.[S].李小明,2003..
  • 6Han Jiawei, Micheline Kamber. Data Mining: Concepts and Techniques. Morgan Kaufmann Publishers, 2000
  • 7C. Blake, E. Keogh, and C. Merz. UCI repository of machine learning databases, 1998http://www. ics. uci. edu/~ mlearn/MLRepository. html
  • 8Friedman N, Goldszmidt M. Building classifiers using Bayesian network [A]. Proc Nation Conference on Artificial Intelligence [C]. Menlo Park, CA: AAAI Press, 1996, 27-1284.
  • 9Friedman N. Bayesian network classifiers[J]. Machine Learning, 1997(29): 131-163.
  • 10Blake C , Keogh E, Merz C. UCI repository of machine learning database [EB/OL]. http://www.ics.uci.edu/-mlearn/MLRepository.html ,1998/2003-12-12.

共引文献37

同被引文献15

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部