期刊文献+

关于装填布局的界及空间损失的分析

Analysis on boundary and spatial loss about loading layout
下载PDF
导出
摘要 重点研究了长方形和长方体装填布局输出最大化问题的界和空间损失,并进行实例分析。提出了一种较严格的上界;将空间损失分为3种:尺寸选择误差、装填结构误差、理论误差。理论误差是不可避免的;尺寸选择误差与尺寸选择有关,当尺寸选定后也是不可避免的;而对于选定尺寸后的装填布局,装填结构误差与装填方法有关,是应主要研究的方面,装填方法优化的结果接近文中较严格的上界时应是较好的装填方法。 Boundary and spatial loss in the maximization problems of outputs for the loading layout of rectangles and cuboids were studied emphatically and an analysis of living example was carried out. A rather strict upper bound has been put forward. The spatial losses have let to be divided into 3 kinds: dimension selection error, loading structural error and theoretical error. The theoretical error is inevitable; the error of dimension selection relates to dimension selection, it is also inevitable while the dimension has already been selected. As for the loading layout after the dimension was being selected and the error of loading structure were all then related to the method of loading and is the main aspect ought to be studied; the result of optimized loading method will be a better method if it approaches to the rather restricted upper bound given in this paper.
出处 《机械设计》 CSCD 北大核心 2007年第12期39-42,共4页 Journal of Machine Design
基金 天津市教委重大专项资助项目(2006ZH9)
关键词 装填布局 利用率 较严格上界 空间损失分析 loading layout utilization rate rather restricted upper bound analysis of spatial losses
  • 相关文献

参考文献7

  • 1Viswanathan K V , Bagchi A. Best-first search for constrained two-dimensional cutting stock problem [ J]. Operations research, 1993, 41 : 768 -776.
  • 2Martello S, Vigo D. Exact solution of the two dimensional finite bin packing problem [ J ]. Management Science , 1998, 44 : 388 - 399.
  • 3Fekete S P, Schepers J. New classes of lower bounds for bin-packing problem [ J ]. IPCO 98, Springer Lecture Notes in Computer Science, 1998, 1 412:257 - 270.
  • 4Fekete S P, Schepers J. On more-dimensional packing Ⅱ: Bounds [ R]. Tech Report 97. 289, Universitat zu Koln, Germany, 2000.
  • 5Marco A Boscheni, Aristide Mingozzi. The two-dimensional finite bin packing problem, Part Ⅰ: new lower bounds for the oriented case[J]. 4OR , 2003(1):27 -42.
  • 6Marco A Boschetti, Aristide Mingozzi. The two-dimensional finite bin packing problem, Part Ⅱ: new lower and upper bounds [ J ]. 4OR , 2003(1) : 135 - 147.
  • 7Jacques Carlier, Frangois Clautiaux,Aziz Moukrim. New reduction procedures and lower bounds for the two-dimensional bin packing problem with fixed orientation [ J ]. Computer & Operations Research, 2007, 34 : 2 223 - 2 250.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部