摘要
研究了修理工可多重休假的两相同部件并联可修系统,每个部件有两类失效状态。假定部件寿命服从指数分布,部件修理时间和修理工休假时间均服从一般连续分布,利用补充变量法求出了系统的瞬时可用度和瞬时故障频度的Laplace变换式,以及系统的稳态可用度和稳态故障频度的明显表达式,并得到了系统可靠度的Laplace变换式和首次故障前平均时间的明显表达式。此外,还对系统进行了效益分析。
A two-unit parallel repairable system with multiple vacations is studied and each unit has two types of failure. It is assumed that the failure time distribution of each unit is exponential and the other distributions are general continuous. By using the supplementary variable method, the Laplace transformation of the pointwise availability and the pointwise failure frequency are obtained. And then, the explicit expressions of the steady-state availability and the steady-state failure frequency of this system are derived. The Laplace transformation of the reliability and the explicit expressions of the mean time to first failure are also obtained. In addition, the benefit of the model is discussed.
出处
《系统工程与电子技术》
EI
CSCD
北大核心
2007年第12期2180-2184,共5页
Systems Engineering and Electronics
基金
国家自然科学基金(70671088)
河北省自然科学基金(A2004000185)资助课题
关键词
多重休假
可用度
补充变量法
效益分析
multiple vacations
availability
supplementary variable method
benefit analysis