期刊文献+

游戏访问模式挖掘的研究与应用 被引量:1

Research and Application of Game Access Patterns Mining
下载PDF
导出
摘要 针对数据挖掘在网络游戏中的应用,提出了游戏访问模式挖掘的概念,并给出一种适用于挖掘游戏访问模式的Apriori_Trie_GAPM算法.该算法基于Apriori算法思想,采用Trie树生成并存储频繁项集,在支持度计算中结合了游戏使用时间. Aiming at the application of data mining on netgames, the concept of game access patterns mining is presented,and Apriori_Trie_GAPM which is suitable for mining game access patterns is given. The improved algorithm is based on the idea of Apriori algorithm. Trie is used to generate and store frequent items sets, and game usage time is combined with support counting.
出处 《郑州大学学报(理学版)》 CAS 2007年第4期82-85,90,共5页 Journal of Zhengzhou University:Natural Science Edition
基金 辽宁省教育厅科技攻关计划基金项目 编号2004D116
关键词 网络游戏 游戏挖掘 APRIORI TRIE 游戏访问模式 netgame game mining Apriori Trie game access pattern
  • 相关文献

参考文献8

  • 1Amund T, Φyvind R, Jorgen V I, et al. Scalable agent-based simulation of players in massively multiplayer online games [C] // Proceedings of the 8th Scandinavian Conference on Artificial Intelligence, Frontiers in Artificial Intelligence and Applications. Bergen, Norway, 2003.
  • 2Amund T. Customizing cyberspace methods for user representation and prediction[D]. Norway: Norwegian University of Science and Technology, 2004.
  • 3Amund T,Gisle B. Game usage mining: information gathering for knowledge discovery in massively multiplayer games [C] // Proceedings of the International Conference on Internet Computing Session on Web Mining. Las Vegas, USA, 2002.
  • 4Ho J Y, Matsumoto Y, Thawonmas R. MMOG player identification: a step toward CRM of MMOGs[C]//Proceedings of the Sixth Pacific Rim International Workshop on Multi-agents. Seoul, Korea, 2003.
  • 5Thawonmas R, Ho J Y, Matsumoto Y. Identification of player types in massively multiplayer online games[C]//Proceedings of the 34th Annual Conference of International Simulation and Gaming Association. Chiba, Japan, 2003.
  • 6Agrawal R, Aggarwal C, Prasad V V V. A tree projection algorithm for generation of frequent itemsets[J]. Journal of Parallel and Distributed Computing, 2000,61 (3) : 350-371.
  • 7Aggarwal C, Agrawal R, Prasad V V V. Depth first generation of long patterns[C]//The 6th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. Boston, MA, USA, 2000.
  • 8Agrawal R, Srikant R. Fast algorithms for mining association rules [C] // Research Report RJ 9839, IBM Almaden Research Center. San Jose, CA, 1994.

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部