期刊文献+

微扰法解Einstein场方程

Solving Einstein's Field Equations by Perturbation
下载PDF
导出
摘要 首先从已知具有对角型度规的Einstein场方程的精确解出发,近似推导了含有微扰条件下的场方程形式;其次,利用这一微扰形式具体计算了静态球对称引力场的外部微扰解,并进而讨论了球状星系外部的引力特征.结果表明,该微扰解不仅可以与内部解衔接,而且在消除微扰的情况下还可以自动恢复到Schwarzchild解的形式. From a diagonal metric tensor depending on four coordinates, the perturbation formulation of Einstein's equations is deduced firstly. And second, based on this formulation the perturbation solutions of Einstein's equations in global stationary axisymmetric fields are calculated. It shows that, in the case of no perturbation existing, the Schwarzchild^s solutions can be recovered naturally. Finally, the reasonableness of the perturbation solutions is discussed, which can help people to understand the gravitational properties of the globular cluster surrounded by faint gaseous shells.
出处 《郑州大学学报(理学版)》 CAS 2007年第4期156-159,共4页 Journal of Zhengzhou University:Natural Science Edition
基金 河南省教育厅自然科学基金资助项目 编号2006140010
关键词 EINSTEIN场方程 Schwarzchild解 微扰 Einstein's field equation Schwarzchild^s solution perturbation
  • 相关文献

参考文献11

  • 1Pachon L A, Rueda J A, Sanabria J D. Realistic exact solution for the exterior field of a rotating neutron star[J]. Physical Review D, 2006, 73(10):104038-104049.
  • 2Buniy R V, Berera A, Kephart T W. Asymmetric inflation: exact solutions[J]. Physical Review D, 2006, 73: 063529-063546.
  • 3Bonnor W B. An exact solutions of the Einstein-Maxwell equations referring to a magnetic dipole[J]. Z Phys, 1966, 190: 444-452.
  • 4Ernst F J. New formulation of the axially symmetric gravitational field problem[J]. Physical Review D, 1968,167:1175- 1178.
  • 5Bonnor W B. The interactions between two classical spinning particles[J]. Classical and Quantum Gravity, 2001,18: 1381-1388.
  • 6Tartaglia A. An approximated solution of the Einstein equations for a rotating body with negligible mass[J]. General Relativity Gravitation, 2003, 35 : 371-387.
  • 7Faye G, Jaranowsky P, Schaer G. A skeleton approximate solution of the Einstein field equations for multiple black-hole systems[J]. Physical Review D, 2004, 69: 124029-124042.
  • 8李俊伦,王均能.局部惯性系的优越性[J].四川师范大学学报(自然科学版),1996,19(4):85-89. 被引量:1
  • 9孟广达,张国民.一种可能的相对论效应[J].郑州大学学报(理学版),1999,33(2):38-43. 被引量:1
  • 10Winberg S. Gravitation and Cosmology[M]. New York: Wiley, 1972.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部