期刊文献+

一个具扩散的捕食模型非常数正解的存在性 被引量:1

Existence of Positive Non-constant Steady-state Solutions to a Prey-predator System with Diffusion
下载PDF
导出
摘要 考虑一个Neumann边界条件下具扩散和Holling型功能反应的捕食-被捕食模型的平衡态问题,获得了该模型正平衡态解的一些结果.首先,给出了正解的先验估计,进而,用能量方法得到其非常数正解的不存在性,用拓扑度理论得出其非常数正解的存在性结果. Considering the steady-states of a diffusive prey-predator model with Holling type functional response function and subjected to homogeneous Neumann boundary condition, some results of positive non- constant steady-state solutions are derived. First, a priori estimates for positive solutions is established;then, the non-exlstence of non-constant positive steady states is given by using the energy method; the existence of non-constant positive steady states is obtained by using the topological degree theory.
作者 别群益 赵琼
出处 《三峡大学学报(自然科学版)》 CAS 2007年第6期565-567,共3页 Journal of China Three Gorges University:Natural Sciences
基金 湖北省教育厅自然科学基金(Q200713001)
关键词 捕食-食铒模型 扩散 先验估计 存在性 prey-predator model diffusion a priori estimates existence
  • 相关文献

参考文献6

  • 1Sugie J, Katayama. Global Asymptotic of a Predatorprey System of Holling type[J]. Nonlinear Anal, 1999, 38:105-121.
  • 2Sugie J. Uniqueness of Limit Cycles in a Predator-prey System with Holling type Functional Response[J]. Appl Math, 2000,3(9) :577-590.
  • 3郭坤,潘家齐.具时滞和Holling功能性反应的捕食-被捕食系统的稳定性及Hopf分支[J].黑龙江大学自然科学学报,2006,23(4):502-505. 被引量:3
  • 4Lou Y, Ni W M. Diffusion vs Cross-diffusion: an Elliptic Approach[J]. J. Differential Equations, 1999, 154: 157-190.
  • 5Lin C S, Ni W M, Takagi I. Large Amplitude Stationary Solutions to a Chemotaxis System[J]. J. Differential Equations, 1988,72:1-27.
  • 6Pang P Y H, Wang M X. Qualitative Analysis of a Ratio-dependent Predator-prey System with Diffusion[J]. Proc. Roy. Soc. Edinburgh A, 2003,133(4) :919-942.

二级参考文献5

  • 1SUGIE J, KATAYAMA. Global asymptotic stability of a predator - prey system of holling type[J]. Nonlinear Anal, 1999,38 : 105 - 121.
  • 2SUGIE J. Uniqueness of limit cycles in a predator - prey system with holling type functional response [ J ]. Appl Math, 2000, 3 (9) :577 - 590.
  • 3COOKE K, GROSSMAN Z, Discrete delay,distributed delay and stablity switches[J], J Math Anal Appl, 1982, 86:592 -627,
  • 4HASSARD B, KAZARINOFF N, WAN Y - H. Theory of applications of Hopf bifurcation, London Math Soc Leet Notes Series,41 [ M]. Cambridge : Cambridge Univ Perss, 1981.
  • 5HALE J, LUNEL S V. Introduction to functional differential equations[ M]. New York: Springer - Verlag, 1983.

共引文献2

同被引文献5

  • 1Ruan Shigui, Xiao Dongmei. Global Analysis in a Predator-prey System with Nonmonotonic Functional Response[J]. SIAM J. Appl. Math. 2001, 61(4): 1445- 1472.
  • 2Chen Yuming. Multiple Periodic Solutions of Delayed Predator-prey Systems with Type IV Functional Responses[J]. Nonlinear Analysis: Real World Applications, 2004, 5:45-53.
  • 3Hu Xiaoling, Liu Guirong, Yan Jurang. Existence of Multiple Positive Periodic Solutions of Delayed Predator- Prey Models with Functional Responses[J]. Computers and Mathematics with Applications, 2006, 52: 1453- 1462.
  • 4Ruan Shigui, Wei Junjie. On the Zeros of Transcendental Functions with Applications to Stability of Delay Differential Equations with Two Delays[J]. Dyna Cont, Disc Impu Syst Seri A, 2003,10 : 863-874.
  • 5Hassard Brian, Kazarinoff Nicholas, Wan Yieh-Hei. Theory and Applications of Hopf Bifurcation[M]. Cambridge: Cambridge University Press, 1980.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部