期刊文献+

蚁群协同模式搜索算法及其收敛性分析 被引量:3

Ant colony pattern search algorithms and their convergence
下载PDF
导出
摘要 提出了一种解决无约束连续空间优化问题的蚁群协同模式搜索算法.该算法通过目标函数值启发式信息素引导群体进行区域搜索,而每个个体的模式搜索为算法提供进一步的局部搜索,其搜索结果以信息素融合的方式进行信息共享,为下一次的区域搜索提供依据.通过随机模式搜索算法理论得出了算法的收敛性定理.详细的测试结果体现算法的涌现智能特征,与其他算法的比较结果说明了算法的有效性及群体协同的优势. A class of ant colony pattern search algorithms (ACPSAs) are designed for the optimization of multimodal functions in continuous space. ACPSAs guide the individuals to perform region searches by objective function heuristic pheromone. Further local searches are handled by pattern searches of individuals, then the search results are shared with pheromone fusion, providing the basis for the region searches in the next iteration. The probabilistic convergence theories of ACPSAs are also given by stochastic pattern search algorithm theory. APCSAs present interesting emergent properties as shown by some analytical test functions. Finally, the comparison results with typical stochastic optimization algorithms show the effectiveness of the algorithms and the advantage in swarm cooperation.
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2007年第6期943-948,共6页 Control Theory & Applications
基金 国家杰出青年科学基金资助项目(60525304) 国家自然科学基金资助项目(60475023) 浙江省自然科学基金资助项目(Y106660).
关键词 蚁群算法 模式搜索算法 协同搜索 ant colony optimization pattern search algorithm cooperative search
  • 相关文献

参考文献8

  • 1BILCHEV G, PARMEE I C. The ant colony metaphor for searching continuous design spaces[J]. Lecture Notes in Computer Science, 1995, 993(1): 25 - 39.
  • 2MATHUR M, KARALE S B, PRIYE S, et al. Ant colony approach to continuous function optimization[J], lndustral Engineering Chemistry Research, 2000, 39(4): 3814 - 3822.
  • 3DREO J, SIARRY E Continuous interacting ant colony algorithm based on dense heterarchy[J]. Future Generation Computer Systems, 2004, 20(5): 841 - 856.
  • 4陈崚,沈洁,秦玲.蚁群算法求解连续空间优化问题的一种方法[J].软件学报,2002,13(12):2317-2323. 被引量:68
  • 5HART W E. Evolutionary pattern search: Algorithms for unconstrained and linearly constrained optimization[J]. IEEE Trans on Evolutionary Computation, 2001, 5(4): 388-397.
  • 6CHELOUAH R, SIARRY E A continuous genetic algorithm designed for the global optimization[J]. J of Heuristics, 2000, 6(2): 191 -213.
  • 7STORN R, PRICE K. Differential evolution-a simple and efficient adaptive scheme for global optimization over continuous spaces,Technical Report TR95-012[R]. Berkeley, CA: Int Computer Science Institute, 1995.
  • 8CHELOUAH R, SIARRY P. Tabu search applied to global optimization[J]. European J of Operational Research, 2000, 123(2): 256 - 270.

二级参考文献1

共引文献67

同被引文献57

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部