期刊文献+

基于Delaunay三角化的形状表示与相似性衡量(英文)

Shape Representation and Similarity Measure Based on Delaunay Triangulation
下载PDF
导出
摘要 在计算机视觉中,形状的表示和相似性衡量是重要且复杂的问题,提出了一种改进的SUSAN(最小一致性区域)拐点检测算法并用于形状表示,同时基于Delaunay三角化给出了一个用于形状相似性衡量的有效算法。首先,对形状的拐点进行Delaunay三角形构造,然后从Delaunay三角网中获得Delaunay图矩阵,最后使用矩阵的谱对拐点进行匹配。在含有1 400幅图像的MPEG-7 CE-Shape-1数据库中的检索实验进一步验证了算法的有效性。 Shape representation and similarity measure are important and difficult problems in computer vision and have been extensively studied for decades. This paper presents an enhanced SUSAN (Smallest Univalue Segment Assimilating Nucleus) Corner Detector for shape representation and an effective algorithm to establish shape similarity measure based on Delaunay triangulation. Firstly, delaunay triangulation was constructed among corners of each shape which has been normalized in advance. Secondly, the Delaunay graph matrix was achieved from Delaunay triangulation net. Finally, the corners were matched by using spectrum of the graph matrix. Shape retrieval Experiments have been conducted on the MPEG-7 Core Experiment CE-Shape- 1 database of 1 400 images which illustrate good performance of the algorithm.
出处 《广西师范大学学报(自然科学版)》 CAS 北大核心 2007年第4期261-264,共4页 Journal of Guangxi Normal University:Natural Science Edition
基金 National 985 Project(0000-X07204) National 863 Plan(2006AA01Z129)
关键词 形状表示 形状相似性衡量 SUSAN DELAUNAY三角化 图谱 shape representation shape similarity measure SUSAN delaunay triangulation graph spectrum
  • 相关文献

参考文献9

  • 1MEHTRE B M, KANKANHALLI M S, LEE W F. Shape measures for content based image retrieval: a comparison [J]. Information Processing & Management, 1997,33(3) :319-337.
  • 2TAO Y, GROSKY W I. Delaunay triangulation for image object indexing: a novel method for shape representation [C]// Proceedings of the Seventh SPIE Symposium on Storage and Retrieval for Image and Video Databases Vl. California : University of Wayne State, 1999 : 631-942.
  • 3SHAHABI C,SAFAR M. An experimental study of alternative shape-based image retrieval techniques[J]. Multimedia Tools and Applications, 2007,32 (1):29-48.
  • 4SMITH S M,BRADY J M. SUSAN a new approach to low level image processing[J]. International Journal of Computer Vision, 1997, 23(1): 45-78.
  • 5HE Xiao-chen,YUNG N H. Curvature scale space corner detector with adaptive threshold and dynamic region of support[C]// Proceedings of 17th International Conference on Pattern Recognition:Volume 2. Washington DC:IEEE Computer Society, 2004:791-794.
  • 6ZHAO Feng, HUANG Qing-ming, GAO Wen. Image matching by multiscale oriented corner correlation[C]//Proceeding of 7th Asian Conference on Computer Vision. Hyderabad&India :Springer, 2006 : 928-937.
  • 7ZHOU Dong-xiang, LI Gan-hua, LIU Yun-hui. Effective corner matching based on delaunay triangulation[C]//IEEE International Conference on Robotics and Automation. New Orleans ,LA :IEEE Computer Society,2004:2730-2735.
  • 8OTSU N. A threshold selection method from gray-level histogram[J]. IEEE Trans on System, Man and Cybemetics SMC-9, 1979: 62-66.
  • 9HARRIS C,STEPHENS M. A combined corner and edge detector[C]//Alvey Virion Conference. Machester:University of Manchester, 1987 : 147-151.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部