期刊文献+

基于学习策略的遗传算法在最优潮流中的应用 被引量:1

Application of Genetic Algorithm Based on Learning Strategy for Optimal Power Flow
下载PDF
导出
摘要 最优潮流问题是电力系统中一个重要的问题,从数学角度上讲,它是一个非线性规划问题。提出了一种基于学习策略的遗传算法用于解决最优潮流问题。学习策略使得种群中的普通个体可以向优良个体学习其优秀的基因结构,从而提高了个体的适应度,加快了算法的寻优速度,增强了算法的搜索能力。该算法中还采用排挤策略来避免个体的过度拥挤,增强了算法的全局搜索能力。通过算例验证了算法的可行性和有效性。 Optimal power flow(OPF) is a very important problem in power system. Analyzing of OPF from mathematics aspect, it is a nonlinear programming problem. This paper suggests a genetic algorithm based on learning strategy to resolve the optimal power flow problem. The learning strategy makes the common individuals in the population learn the excellent gene structures from other fine individuals, whereby improving the fitness of individuals, accelerating the optimization speed and enhancing the local search ability of the algorithm. The crowding strategy is adopted in this algorithm to avoid the individual excess crowding and to enhance the global search ability. Also, the algorithm feasibility and validity are tested via the computation examples.
出处 《西安理工大学学报》 CAS 2007年第4期370-374,共5页 Journal of Xi'an University of Technology
关键词 电力系统 最优潮流 遗传算法 学习策略 power system optimal power tlow genetic algorithm learning strategy
  • 相关文献

参考文献10

  • 1Carpentier J,Contribution A. Letude du dispatching economique[J]. Bulletin DE LA Societe Francaise DES Electriciens, 1962,3 : 431-447.
  • 2丁晓莺,王锡凡.最优潮流在电力市场环境下的最新发展[J].电力系统自动化,2002,26(13):1-7. 被引量:40
  • 3Sun D I,Ashley B,Brewer B,et al. Optimal power flow by newton approach[J]. IEEE Trans on Power Apparatus and Systems, 1984, PAS-103 (10) : 2864-2880.
  • 4Reid G F, Hasdorf L. Economic dispatch using programming[J]. IEEE Trans on Power Apparatus and Systems, 1973, PAS-92 (6) : 2015-2023.
  • 5Stott B , Marinho J L . Linear programming for power system network security application[J] . IEEE Trans on Power Apparatus and Systems, 1979, PAS-98(3): 837-848.
  • 6韦化,李滨,杭乃善,刘东平,文杰,佐佐木博司.大规模水-火电力系统最优潮流的现代内点算法实现[J].中国电机工程学报,2003,23(6):13-18. 被引量:34
  • 7Bakirtzis G, Biskas N, Zoumas E,et al. Optimal power flow by enhanced genetic algorithm[J]. IEEE Trans on Power Systems, 2002, 17(2) : 229-236.
  • 8Tom M Mitchell.机器学习(Machine learning)[M].北京:机械工业出版社(Beijing:China Machine Press),2003.
  • 9洪毅,任庆生,曾进.位重要性进化算法[J].计算机学报,2006,29(6):992-997. 被引量:5
  • 10Jason Yuryevich,Kit Po Wong. Evolutionary programming based optimal power flow algorithm[J]. IEEE Trans on Power Systems, 1999,14(4):1245-1250.

二级参考文献19

  • 1韦化,李滨,杭乃善,等(Wei Hua,Li Bin,Hang Naishan,et al.基于现代内点非线性规划的大规模水火电力系统最优潮流的理论分析(Research on uni-polarity phase shifting controlled inverters with high frequency pulse ac link)[J].中国电机工程学报(Proceeding of the CSEE)2003,23(4):5-8.
  • 2Wei H, Sasaki H, Kubokawa J, et al. A interior point nonlinear programming for optimal power flow problems with a novel data structure[J].IEEE Trans on Power Systems, 1998,13(3): 870-877.
  • 3Wei H, Sasaki H.Yokoyama IL An application of interior point quadratic programming algorithm to power system optimization problems[J].IEEE Trans on Power Systems,1996,11(1): 260-267.
  • 4Wu Yuchi, Debs A S,. Marsten R E. A direct nonlinear predictor-conector primal-dual interior point algorithm for optimal power flows [J].IEEE Trans on Power Systems 1994,9(2): 876-883.
  • 5Momoh J A, Koessler R J, Bond M S, et al. Challenges to optimal power flow [C]. 96 WM 312-9 PWRS, IEEE/PES, Baltimore, MD. January 21-25,1996.
  • 6Lozano J.A.,Larranaga P..Optimization by learning and simulation of probabilistic graphical models.In:Proceedings of the PPSN2002,2002
  • 7Muhlenbein H..The equation for response to selection and its use for prediction.Evolutionary Computation,1997,5(3):303~346
  • 8Larranaga P.,Lozano J.A..Estimation of Distribution Algorithms:A New Tool for Evolutionary Computation.New York:Kluwer Academic Publishers,2001
  • 9Schweppe F C,Caramanis M C,Tabors R D,et al.Spot Pricing of Electricity[]..1988
  • 10Zobian A,Llic M D.Unbundling of Transmission and Ancillary Services[].IEEE Transactions on Power Systems.1997

共引文献74

同被引文献14

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部