期刊文献+

酿酒酵母生物吸附Cu^(2+)的动力学及吸附平衡研究 被引量:11

Kinetics and Equilibrium of Cu~(2+) Biosorption by Dried Biomass of Saccharomyces cerevisia
下载PDF
导出
摘要 研究了重金属离子Cu2+在酿酒酵母上的生物吸附特性,内容包括生物吸附动力学、吸附等温线以及pH对生物吸附的影响.生物吸附动力学结果表明,当Cu2+初始浓度为71.6mg/L时,Cu2+在酿酒酵母上的生物吸附过程可以分为两个阶段,第一阶段为物理吸附,在10min内达到平衡,此后,随着时间的延长,有微量脱附现象发生.Cu2+在酵母上的吸附过程可以很好地用准二级动力学方程来描述(R2=0.9984),动力学参数k2为7.65×10-3g mg-1min-1,qe为9.15mg/g.吸附等温线结果表明,Cu2+在酿酒酵母上的生物吸附可以用Langmuir和Freundlich方程来描述,最大吸附量qmax为10.2mg/g·pH为5.0时Cu2+在酿酒酵母上的吸附量最大.酿酒酵母可用于处理低浓度含Cu2+的废水. Biosorption is an alternative technology for treating heavy metal contaminant. The characteristics of Cu^2+ biosorption by Saccharomyces cerevisia were investigated, including the biosorption kinetics, equilibrium isotherm and pH effect. The ex- perlment results showed that when the initial Cu^2+ concentration was 71.6 mg/L, the process of Cu^2+ biosorption by the dry hi- omass of S. cerevisia could be divided into two stages. The first stage was physical sorption and reached equilibrium very quick- ly (within 10 minutes ), and then desorption took place. The biosorption kinetics could be well described by the pseudo second-order equation (R2 =0.998 4). The kinetic parameters k2 and qe were 7. 65 × 10^-3 and 9. 15 mg/g, respectively. The equilibrium isotherm date could be fitted to the Langmuir and Freundlich models, with the largest biosorptive capacity of 10. 2 mg/g. The optimum pH for biosorption was 5. O. S. cerevisia can be applied in the treatment of the wastewater with low concentration of Cu^2+.
出处 《应用与环境生物学报》 CAS CSCD 北大核心 2007年第6期848-852,共5页 Chinese Journal of Applied and Environmental Biology
基金 国家自然科学基金项目(No50325824) 清华大学基础研究基金资助项目(JC2002054)~~
关键词 CU^2+ 酿酒酵母 重金属 生物吸附 动力学 Cu^2+ Saccharomyces cerevisia heavy metal biosorption kinetics
  • 相关文献

参考文献2

二级参考文献51

  • 1王建龙.微生物表面展示技术及其在环境污染治理中的应用[J].中国生物工程杂志,2005,25(B04):112-117. 被引量:6
  • 2王保军,杨惠芳.微生物与重金属的相互作用[J].重庆环境科学,1996,18(1):35-38. 被引量:50
  • 3刘宁 罗顺忠 杨远友 等.啤酒酵母吸附放射性核素241Am的研究.环境科学学报,2002,(4):469-472.
  • 4Tsezos M. Biosorption of metals. The experience accumulated and the outlook for technology development. Hydrometallurgy,2001,59(2 -3):241 -243.
  • 5Kratochvil D, Volesky B. Advances in the biosorption of heavy metals. Trends in Biotechnology, 1998, 16(7 ) : 291 - 300.
  • 6Eide D J. The molecular biology of metal ion transport in Saccharomyces cerevisiae. Annual Review of Nutrition, 1998,(18):441 -469.
  • 7Kapoor A, Viraraghavan T. Fungal biosorption-an alternative treatment option for heavy metal bearing wastewaters: a review.Bioresouree Technology, 1995, 53(3):195 - 206.
  • 8Bingol A, Ueun H, Bayhan Y K, et al. Removal of chromate anions from aqueous stream by a cationic surfactant - modified yeast. Bioresource Technology, 2004, 94 (3) : 245 - 249.
  • 9Wang J L. Biosorption of copper(Ⅱ) by chemically modified biomass of Saccharomyces cerevisiae. Process Biochemistry,2002, 37(8) : 847 -850.
  • 10Gharieb M M, Gadd G M. Role of glutathione in detoxification of metal (loid) s by Saccharomyces cerevisiae. Biometals, 2004,17(2) : 183 -188.

共引文献131

同被引文献176

引证文献11

二级引证文献55

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部