期刊文献+

无线传感器网络中自适应数据存取 被引量:3

Adaptive Information Brokerage in Wireless Sensor Networks
下载PDF
导出
摘要 数据存取,也称信息中介,是指生产者(传感器节点)将产生的感知数据按照某种策略存放在特定的位置上,而消费者(基站、用户、传感器节点)将查询请求按照对应策略路由到数据存放位置获得感兴趣的数据.利用数据速率和地理位置信息来减少网状拓扑结构传感器网络中数据存取的代价.首先,依据生产者和消费者的关系建模为"一对一"(一个生产者,一个消费者)、"多对一"(多个生产者,一个消费者)、"多对多"(多个生产者,多个消费者)3种模型来对存取代价进行分析.其次,基于上述模型,提出利用数据速率和地理位置来确定数据存放位置的自适应全局最优贪婪算法ODS(optimal data storage)和局部最优近似算法NDS(near-optimal data storage)以及最优数据传输模式.最后,ODS和NDS都依据数据速率、生产者和消费者地理位置、网络拓扑来决定存放位置,并且通过自适应地调整来减少数据存取能量消耗.实验结果表明:NDS不仅能够节省能耗,而且在70%的情况下达到与ODS相同的效果. Information brokerage in wireless sensor networks involves producers (such as sensor nodes) storing in storage positions a large amount of data that they have collected and consumers (e.g. base stations, users, and nodes) retrieving that information. In this paper, first, the data storage problem is formalized into a one-to-one (one producer and one consumer) model, a many-to-one (m producers and one consumer) model, and a many-to-many (m producers and n consumers) model with the goal of minimizing the total energy consumption. Second, based on the above models, two algorithms are proposed to determine the storage positions based on data rates of producers, query rates of consumers, and transmission scheme of information brokerage. The optimal data storage (ODS) scheme, a greedy algorithm, produces the global optimal data storage positions and the near-optimal data storage (NDS) scheme, an approximate algorithm, can greatly reduce the computational overhead while achieving local optimal positions. Both ODS and NDS are able to adjust the storage positions adaptively to minimize energy consumption that includes the costs of storing and querying the data. Simulation results show that NDS not only provides substantial cost benefits but also performs as effective and efficient as ODS in over 70% of the tested cases.
出处 《软件学报》 EI CSCD 北大核心 2008年第1期103-115,共13页 Journal of Software
基金 Supported by the National Natural Science Foundation of China under Grant No.90612007 (国家自然科学基金) the National Basic Research Program of China under Grant No.2007CB310806 (国家重点基础研究发展计划(973))
关键词 无线传感器网络 数据存取 数据速率 地理位置 wireless sensor networks information brokerage data rate geographical location
  • 相关文献

参考文献2

二级参考文献43

  • 1郭龙江,李建中,李贵林.无线传感器网络环境下时-空查询处理方法[J].软件学报,2006,17(4):794-805. 被引量:29
  • 2Ganesan D, Govindan R, Shenker S, Estrin D. Highly-Resilient, energy-efficient multipath muting in wireless sensor networks.Mobile Computing and Communications Review, 2002,1(2):295-298.
  • 3Braginsky D, Estrin D. Rumor routing algorithm for sensor networks. In: Raghavendra CS, ed. Proceedings of the 1st Workshop on Sensor Networks and Applications. New York: ACM Press, 2002.
  • 4Girod L, Bychkovskiy V, Elson J, Estrin D. Locating tiny sensors in time and space: A case study. In: Manoli Y, Kim KS, eds.Proceedings of the International Conference on Computer Design. Piscataway: IEEE Press, 2002. 195-204.
  • 5Bulusu N, Estrin D, Girod L, Heidemann J. Scalable coordination for wireless sensor networks: Self-Configuring localization systems. 2001. http://lecs.cs.ucla.edu/-bulusu/papers/Bulusu01c.html.
  • 6Cerpa A, Estrin D. ASCENT: Adaptive self-configuring sensor networks topologies. In: Kermani P, ed. Proceedings of the 21st International Annual Joint Conference of the IEEE Computer and Communications Societies. Piscataway: IEEE Press, 2002.101-111
  • 7Elson J. Time synchronization services for wireless sensor networks. In: Kumar V, ed. Proceedings of the 15th International Parallel & Distributed Processing Symposium. 2001. Los Alamitos: IEEE Computer Press, 2001. 1965-1970.
  • 8Ye W, Heidemann J, Estrin D. An energy-efficient MAC protocol for wireless sensor networks. In: Kermani P, ed. Proceedings of the 21st International Annual Joint Conference of the IEEE Computer and Communications Societies. Piscataway: IEEE Press,2002.91-100.
  • 9Heidemann J, Silva F, Intanagonwiwat C. Building efficient wireless sensor networks with low level naming. In: Marzullo K, ed.Proceedings of the 18th ACM Symposium on Operating System Principles. New York: ACM Press, 2001. 146-159.
  • 10Intanagonwiwat C, Govindan R, Estrin D, Heidemann J, Silva F. Directed diffusion for wireless sensor networking. ACM/IEEE Transactions on Networking, 2002, 11(1):2-16.

共引文献632

同被引文献30

  • 1马礼,唐长茂.一种基于分簇的无线传感器网络数据存储管理系统[J].计算机研究与发展,2011,48(S1):89-93. 被引量:8
  • 2郭龙江,李建中,李贵林.无线传感器网络环境下时-空查询处理方法[J].软件学报,2006,17(4):794-805. 被引量:29
  • 3XIANG Shi Li,ZHOU Yong Luan,HOCK B L,et al.Query allocation in wireless sensor networks with multiple base station[J].Lecture Notes in Computer Science,2009(5463): 107-122.
  • 4XIANG S,LIM H B,TAN K L,et al.Similarity-aware query allocation in sensor networks with multiple base stations.In : Proc.of DMSN.2007.
  • 5LING Hui, ZNATI T.Similarity based optimization for multiple query processing in wireless sensor networks[J].Leeture Notes in Computer Science, 2009,5516 : 117-130.
  • 6TRIGONI N,YAO Yong, DEMERS A,et al.Multi-query optimization for sensor networks[J].Lecture Notes in Com puter Science, 2005,3560 : 307-321.
  • 7AKYILDIZ 1, SU W, SANKARASUBRAMANIAM Y,et al. A survey on sensor networks.IEEE Communications Maga- zine, 2002,40(8) : 102-114.
  • 8杨挺,孙雨耕,王燕琳,张志东.无线传感器网络中数据融合机制的能量有效性研究[J].计算机应用研究,2007,24(10):95-98. 被引量:8
  • 9YU G J. Adaptive storage policy switching for wireless sensor networks[J]. Wireless Pers Commun, 2009(48): 327-346.
  • 10LIAO W H, CHEN C C. Data storage and range query mechanism for multi-dimensional attributes in wireless sensor networks[J]. IET Communications, 2010, 4(15): 1799-1808.

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部