期刊文献+

基于多表达式编程的汇率预测的研究 被引量:6

Exchange Rate Forecasting Using Multi-Expression Programming
下载PDF
导出
摘要 由于汇率预测(Exchange Rate Prediction)是一种不确定、非线性、非平稳的时间序列预测问题,传统的方法往往难以得到满意的结果。多表达式编程(Multi Expression Programming,MEP)是一种新型的线性编码的遗传编程(Genetic Programming)的变种。提出一种克隆选择算法优化的多表达式编程模型对国际上3种重要的汇率数据进行了建模和预测,实验结果表明,该模型克服了传统进化算法优化的遗传编程及人工神经网络早收敛、难以找到全局最优解的缺点,取得了令人满意的结果。 Forecasting exchange rate is an uncertain, nonlinear and unstable time - serial prediction problem, which has no satisfying results using traditional method. Multi - Expression programming (MEP) is a new Genetic Programming (GP) variant that uses a linear representation of chromosomes. In this paper a clonal selection -based MEP model for forecasting three major international currency exchange rates is proposed. Empirical results indicate that the proposed method is better than the conventional artificial neural network and genetic programming forecasting models.
出处 《济南大学学报(自然科学版)》 CAS 2008年第1期77-80,共4页 Journal of University of Jinan(Science and Technology)
基金 国家自然科学基金(60573065)
关键词 汇率预测 遗传编程 多表达式编程 克隆选择算法 exchange rate prediction genetic programming multi expression programming clonal selection algorithm
  • 相关文献

参考文献9

  • 1杨炘,温晓燕.美元、日元、英镑的中长期汇率预测方法研究[J].清华大学学报(哲学社会科学版),2002,17(2):46-49. 被引量:1
  • 2吴鹏,刘振,陈月辉.基于神经树的时间序列预测[J].山东科学,2007,20(1):59-64. 被引量:4
  • 3Koza J R. Genetic Programming: On the Programming of Computers by Natural Selection [ M ]. MA : MIT Press, 1992.
  • 4Ohean M, Dumitrescu D. Multi expression programming[ R]. Technical Report, Babes Bolyai University, Romania, www. mep. cs. ubbcluj, ro,2006.
  • 5De Castro L N,Zuben V. Learning and optimization using the clonal selection principle[ J]. IEEE Transaction on Evolutionary Computation, special issue on Artificial Immune System (AIS) ,2002,6 (3) :239-351.
  • 6Yuehui Chen,Lizhi Peng,Ajith Abraham. Exchange Rate Forecasting using Flexible Neural Trees [ C ]. Lecture Notes on Computer Science ,2006:518-523.
  • 7Chongwei Li, Yuehui Chen, Bo Yang, et al. Exchange Rates Forecasting Using Tabu Search Based Flexible Neural Networks [ C ]. The International Conference on Artificial Intelligence, 2006:801-809.
  • 8P G Benardos, G C Vosniakos. Optimizing feedforward artificial neural network architecture [ J ]. Engineering Applications of Artificial Intelligence ,2007,20:365-382.
  • 9周爱民,曹宏庆,康立山,黄玉珍.用遗传程序设计实现复杂函数的自动建模[J].系统仿真学报,2003,15(6):797-799. 被引量:31

二级参考文献21

  • 1魏巍贤,蒋正华.汇率的神经网络预报模型及其实例分析[J].预测,1995,14(2):67-69. 被引量:4
  • 2Somanath, V. S. Efficient exchange rate forecast:lagged models better than random walk. Journal of International Money and Finance, 1986, (5) : 195 -220.
  • 3Finn. M. G. Forecasting the exchange rate: a monetary or random walk phenomenon. Journal of International Money and Finance. 1986, (5) :181 -193.
  • 4KEITH PILBEAM Exchange rate models and exchangerate expectation: and empirical investigation, Applied Economics, 1995, (27): 1009-1015.
  • 5STEPHEN A. EASTON and PAUL A. LALOR The accuracy and timeliness of survey forecasts of six-month and twelve-month ahead exchange rates, Applied Financial Economics, 1995, (5) : 367 - 372.
  • 6[美]克鲁格曼.汇率决定[M].房书平译.上海:上海三联出版社,1992.
  • 7KOZA J R.Genetic Programming:On the Programming of Computers by Natural Selection[M].Cambridge,MA:MIT Press,1992.
  • 8CHEN Y,YANG B,DONG J.Nonlinear Systems Modeling Via Optimal Design of Neural Trees[J].International Journal of Neuralsystems.2004,14:125-138.
  • 9CHEN Y,YANG B,DONG J,ABRAHAM A.Time-Series Forecasting Using Flexible Neural Tree Model[J].Information Science,2005,174(3-4):219-235.
  • 10CHEN Y,YANG B,DONG J.Evolving Flexible Neural Networks Using Ant Programming and PSO Algorithm[C]// International Symposium on Neural Networks (ISNN'04),Dalian,China,2004,LNCS 3173:211-216.

共引文献33

同被引文献55

引证文献6

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部