期刊文献+

双指数积分法计算有限希尔伯特变换的研究

Study of finite Hilbert transformation via double exponential quadrature scheme
下载PDF
导出
摘要 目的研究在单精度或双精度浮点数计算条件下,通过双指数变换(DE)计算有限希尔伯特变换(FHT)的有效性。方法为了避免浮点数溢出,我们由浮点的最大值作为输入参数,然后根据积分级数N计算出积分步长。结果如果把数组长度作为积分级数,采用单精度或双精度浮点数计算,双指数变换方法的FHT相对误差的数量级为10E-7~10E-5。结论双指数变换法可以被应用到某些领域进行快速FHT,如CT重建中。 Objective To study the effectiveness of finite Hilbert transformation (FHT) via double exponential (DE) quadrature scheme with single or double precision floating-point values. Methods To avoid floating point overflow, we calculate the input value according to the maximum of floating-point number and get corresponding integration step at a given level N. Results At level of the dimension of given data, the relative accuracy of FHT by DE method with single or double precision floating-point values is at the magnitude of 10E-7-10E-5. Conclusion DE quadrature scheme can be used for fast FHT in certain fields such as CT reconstruction.
出处 《中国医学影像技术》 CSCD 北大核心 2007年第12期1885-1887,共3页 Chinese Journal of Medical Imaging Technology
基金 国家自然科学基金项目(10605002 10675013 10527003 60672104) 北京市自然科学基金项目(3073019) 科技部973项目(2006CB70570005)
关键词 有限希尔伯特变换 双指数积分 CT重建 Finite Hilbert transformation Double exponential quadrature CT reconstruction
  • 相关文献

参考文献8

  • 1Natterer F. The Mathematics of Computerized Tomography[M].New York: Wiley, 1986.
  • 2Elliott D, Paget DF. Gauss type quadrature rules for Cauchy principle value integrals [J]. Mathematics of Computation, 1979, 33 (145) :301-309.
  • 3Hasegawa T, Torii T. An automatic quadrature for cauchy principle value integrals[J].Mathematics of Computation, 1991, 56 (194) :741-754.
  • 4Bialecki B, Keast P. A sinc quadrature subroutine for Cauchy principal value integrals[J]. J Computational and Applied Mathematics, 1999,112(1-2) :3-20.
  • 5Bialecki B. A Sinc-Hunter Quadrature rule for Cauchy principle value integrals[J]. Mathematics of Computation, 1990, 55 (192) : 665-681.
  • 6Natarajan A, Mohankumar N. A comparison of some quadrature methods for approximating Cauchy principle value integrals [J]. J Computational Physics, 1995,116(2) :365-368.
  • 7Dragomir NM, Dragomir SS, Farrell P. Approximating the finite Hilbert transform via trapezoid type inequalities [J].Computers and Mathematics with Applications, 2002,43(10):1359-1369.
  • 8Mori M. Discovery of the double exponential transformation and its developments[J].Publ RIMS, Kyoto Univ, 2005, 41(4):897- 935.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部